A generalization of Bang’s lemma
HTML articles powered by AMS MathViewer
- by Gergely Ambrus;
- Proc. Amer. Math. Soc. 151 (2023), 1277-1284
- DOI: https://doi.org/10.1090/proc/16228
- Published electronically: December 21, 2022
- HTML | PDF | Request permission
Abstract:
We prove a common extension of Bang’s and Kadets’ lemmas for contact pairs, in the spirit of the Colourful Carathéodory Theorem. We also formulate a generalized version of the affine plank problem and prove it under special assumptions. In particular, we obtain a generalization of Kadets’ theorem. Finally, we give applications to problems regarding translative and homothetic coverings.References
- Arseniy Akopyan and Roman Karasev, Kadets-type theorems for partitions of a convex body, Discrete Comput. Geom. 48 (2012), no. 3, 766–776. MR 2957644, DOI 10.1007/s00454-012-9437-1
- Arseniy Akopyan, Roman Karasev, and Fedor Petrov, Bang’s problem and symplectic invariants, J. Symplectic Geom. 17 (2019), no. 6, 1579–1611. MR 4057722, DOI 10.4310/JSG.2019.v17.n6.a1
- Ralph Alexander, A problem about lines and ovals, Amer. Math. Monthly 75 (1968), 482–487. MR 234351, DOI 10.2307/2314701
- G. Ambrus, Appendix: Plank problems, Manuscript, 2010.
- Keith Ball, The plank problem for symmetric bodies, Invent. Math. 104 (1991), no. 3, 535–543. MR 1106748, DOI 10.1007/BF01245089
- Keith Ball, A lower bound for the optimal density of lattice packings, Internat. Math. Res. Notices 10 (1992), 217–221. MR 1191572, DOI 10.1155/S1073792892000242
- Keith Ball, Convex geometry and functional analysis, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 161–194. MR 1863692, DOI 10.1016/S1874-5849(01)80006-1
- Thøger Bang, On covering by parallel-strips, Mat. Tidsskr. B 1950 (1950), 49–53. MR 38085
- Thøger Bang, A solution of the “plank problem.”, Proc. Amer. Math. Soc. 2 (1951), 990–993. MR 46672, DOI 10.1090/S0002-9939-1951-0046672-4
- Thøger Bang, Some remarks on the union of convex bodies, Tolfte Skandinaviska Matematikerkongressen, Lund, 1953, Lunds Universitets Matematiska Institution, Lund, 1954, pp. 5–11. MR 65183
- Alexey Balitskiy, A multi-plank generalization of the Bang and Kadets inequalities, Israel J. Math. 245 (2021), no. 1, 209–230. MR 4357461, DOI 10.1007/s11856-021-2210-5
- Imre Bárány, A generalization of Carathéodory’s theorem, Discrete Math. 40 (1982), no. 2-3, 141–152. MR 676720, DOI 10.1016/0012-365X(82)90115-7
- Peter Brass, William Moser, and János Pach, Research problems in discrete geometry, Springer, New York, 2005. MR 2163782
- András Bezdek, On a generalization of Tarski’s plank problem, Discrete Comput. Geom. 38 (2007), no. 2, 189–200. MR 2343303, DOI 10.1007/s00454-007-1333-8
- A. Bezdek and K. Bezdek, A solution of Conway’s fried potato problem, Bull. London Math. Soc. 27 (1995), no. 5, 492–496. MR 1338694, DOI 10.1112/blms/27.5.492
- A. Bezdek and K. Bezdek, Conway’s fried potato problem revisited, Arch. Math. (Basel) 66 (1996), no. 6, 522–528. MR 1388103, DOI 10.1007/BF01268872
- Károly Bezdek, Tarski’s plank problem revisited, Geometry—intuitive, discrete, and convex, Bolyai Soc. Math. Stud., vol. 24, János Bolyai Math. Soc., Budapest, 2013, pp. 45–64. MR 3204554, DOI 10.1007/978-3-642-41498-5_{2}
- L. Fejes Tóth, G. Fejes Tóth, and W. Kuperberg, Lagerungen – Arrangements in the plane, on the sphere, and in space, Grundlehren der mathematischen Wissenschaften, Vol. 360, Springer Verlag, 2023.
- W. Fenchel, On Th. Bang’s solution of the plank problem, Mat. Tidsskr. B 1951 (1951), 49–51. MR 47347
- R. J. Gardner, Relative width measures and the plank problem, Pacific J. Math. 135 (1988), no. 2, 299–312. MR 968614, DOI 10.2140/pjm.1988.135.299
- Alexey Glazyrin, Covering a ball by smaller balls, Discrete Comput. Geom. 62 (2019), no. 4, 781–787. MR 4027615, DOI 10.1007/s00454-018-0010-4
- Henry F. Hunter, Some special cases of Bang’s inequality, Proc. Amer. Math. Soc. 117 (1993), no. 3, 819–821. MR 1145419, DOI 10.1090/S0002-9939-1993-1145419-5
- Vladimir Kadets, Coverings by convex bodies and inscribed balls, Proc. Amer. Math. Soc. 133 (2005), no. 5, 1491–1495. MR 2111950, DOI 10.1090/S0002-9939-04-07650-6
- W. O. J. Moser, On the relative widths of coverings by convex bodies, Canad. Math. Bull. 1 (1958), 154, 168, 174. MR 123235, DOI 10.4153/CMB-1958-015-9
- Márton Naszódi, Covering a set with homothets of a convex body, Positivity 14 (2010), no. 1, 69–74. MR 2596464, DOI 10.1007/s11117-009-0005-8
- Márton Naszódi, Flavors of translative coverings, New trends in intuitive geometry, Bolyai Soc. Math. Stud., vol. 27, János Bolyai Math. Soc., Budapest, 2018, pp. 335–358. MR 3889267
- F. L. Nazarov, The Bang solution of the coefficient problem, Algebra i Analiz 9 (1997), no. 2, 272–287 (Russian); English transl., St. Petersburg Math. J. 9 (1998), no. 2, 407–419. MR 1468554
- D. Ohmann, Über die Summe der Inkreisradien bei Überdeckung, Math. Ann. 125 (1953), 350–354 (German). MR 53541, DOI 10.1007/BF01343130
- V.P. Soltan, personal communication, 1990.
- Valeriu Soltan and Éva Vásárhelyi, Covering a convex body by smaller homothetic copies, Geom. Dedicata 45 (1993), no. 1, 101–113. MR 1199732, DOI 10.1007/BF01667407
- A. Tarski, Uwagi o stopniu równowazności wielokatów (Further remarks about the degree of equivalence of polygons). Odbilka Z. Parametru 2 (1932), 310–314.
- É. Vásárhelyi, Über eine Überdeckung mit homothetischen Dreiecken, Beitr. Algebra Geom. 17 (1984), 61–70.
Bibliographic Information
- Gergely Ambrus
- Affiliation: Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, Hungary; and Bolyai Institute, University of Szeged, Hungary
- MR Author ID: 786171
- ORCID: 0000-0003-1246-6601
- Email: ambrus@renyi.hu
- Received by editor(s): January 25, 2022
- Received by editor(s) in revised form: May 22, 2022
- Published electronically: December 21, 2022
- Additional Notes: This research work was partially supported by Hungarian National Research grant no. NKFIH KKP-133819 and by project no. TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.
- Communicated by: Deane Yang
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1277-1284
- MSC (2020): Primary 52A40, 52C15, 52C17, 46C05
- DOI: https://doi.org/10.1090/proc/16228
- MathSciNet review: 4531654
Dedicated: I would like to dedicate this piece of work to the loving memory of my father, Imre Ambrus (1953-2021)