On symmetric representations of $\mathrm {SL}_2(\mathbb {Z})$
HTML articles powered by AMS MathViewer
- by Siu-Hung Ng, Yilong Wang and Samuel Wilson;
- Proc. Amer. Math. Soc. 151 (2023), 1415-1431
- DOI: https://doi.org/10.1090/proc/16205
- Published electronically: January 26, 2023
- HTML | PDF | Request permission
Abstract:
We introduce the notions of symmetric and symmetrizable representations of ${\operatorname {SL}_2(\mathbb {Z})}$. The linear representations of ${\operatorname {SL}_2(\mathbb {Z})}$ arising from modular tensor categories are symmetric and have congruence kernel. Conversely, one may also reconstruct modular data from finite-dimensional symmetric, congruence representations of ${\operatorname {SL}_2(\mathbb {Z})}$. By investigating a $\mathbb {Z}/2\mathbb {Z}$-symmetry of some Weil representations at prime power levels, we prove that all finite-dimensional congruence representations of ${\operatorname {SL}_2(\mathbb {Z})}$ are symmetrizable. We also provide examples of unsymmetrizable noncongruence representations of ${\operatorname {SL}_2(\mathbb {Z})}$ that are subrepresentations of a symmetric one.References
- Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619, DOI 10.1090/ulect/021
- Paul Bruillard, Siu-Hung Ng, Eric C. Rowell, and Zhenghan Wang, On classification of modular categories by rank, Int. Math. Res. Not. IMRN 24 (2016), 7546–7588. MR 3632091, DOI 10.1093/imrn/rnw020
- Chongying Dong, Xingjun Lin, and Siu-Hung Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121–2166. MR 3435813, DOI 10.2140/ant.2015.9.2121
- Samuel Eilenberg and Saunders MacLane, Cohomology theory in abstract groups. I, Ann. of Math. (2) 48 (1947), 51–78. MR 19092, DOI 10.2307/1969215
- Samuel Eilenberg and Saunders MacLane, Cohomology theory in abstract groups. II. Group extensions with a non-Abelian kernel, Ann. of Math. (2) 48 (1947), 326–341. MR 20996, DOI 10.2307/1969174
- Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015. MR 3242743, DOI 10.1090/surv/205
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- Andrew Fiori and Cameron Franc, The unbounded denominators conjecture for the noncongruence subgroups of index 7, J. Number Theory 240 (2022), 611–640. MR 4458253, DOI 10.1016/j.jnt.2021.11.014
- Yi-Zhi Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 871–911. MR 2468370, DOI 10.1142/S0219199708003083
- André Joyal and Ross Street, Braided monoidal categories, Macquarie Math. Reports NO. 850067 (1985).
- André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, DOI 10.1006/aima.1993.1055
- Alexei Kitaev, Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006), no. 1, 2–111. MR 2200691, DOI 10.1016/j.aop.2005.10.005
- H. D. Kloosterman, The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups. I, Ann. of Math. (2) 47 (1946), 317–375. MR 21032, DOI 10.2307/1969082
- Xiao-Gang Wen, An introduction to quantum order, string-net condensation, and emergence of light and fermions, Ann. Physics 316 (2005), no. 1, 1–29. MR 2125773, DOI 10.1016/j.aop.2004.07.001
- George W. Mackey, On induced representations of groups, Amer. J. Math. 73 (1951), 576–592. MR 42420, DOI 10.2307/2372309
- Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038, DOI 10.1007/BF01238857
- S.-H. Ng, Y. Wang, and S. Wilson, SL2Reps, Constructing symmetric representations of $\text {SL}(2, \mathbb {Z})$, GAP package released Nov. 2022 (Version 1.1). https://www.gap-system.org/Packages/sl2reps.html.
- Siu-Hung Ng, Eric C Rowell, Zhenghan Wang, and Xiao-Gang Wen, Reconstruction of modular data from $\operatorname {SL}_2(\mathbb {Z})$ representations, math.QA arXiv:2203.14829 (2022).
- Siu-Hung Ng and Peter Schauenburg, Congruence subgroups and generalized Frobenius-Schur indicators, Comm. Math. Phys. 300 (2010), no. 1, 1–46. MR 2725181, DOI 10.1007/s00220-010-1096-6
- Siu-Hung Ng, Yilong Wang, and Qing Zhang, Modular categories with transitive Galois actions, Comm. Math. Phys. 390 (2022), no. 3, 1271–1310. MR 4389082, DOI 10.1007/s00220-021-04287-5
- Alexandre Nobs, Die irreduziblen Darstellungen der Gruppen $SL_{2}(Z_{p})$, insbesondere $SL_{2}(Z_{2})$. I, Comment. Math. Helv. 51 (1976), no. 4, 465–489 (German). MR 444787, DOI 10.1007/BF02568170
- Alexandre Nobs and Jürgen Wolfart, Die irreduziblen Darstellungen der Gruppen $SL_{2}(Z_{p})$, insbesondere $SL_{2}(Z_{p})$. II, Comment. Math. Helv. 51 (1976), no. 4, 491–526 (German). MR 444788, DOI 10.1007/BF02568171
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- Eric C. Rowell and Zhenghan Wang, Mathematics of topological quantum computing, Bull. Amer. Math. Soc. (N.S.) 55 (2018), no. 2, 183–238. MR 3777017, DOI 10.1090/bull/1605
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 450380, DOI 10.1007/978-1-4684-9458-7
- Shun’ichi Tanaka, Irreducible representations of the binary modular congruence groups $\textrm {mod}\,p^{\lambda }$, J. Math. Kyoto Univ. 7 (1967), 123–132. MR 229737, DOI 10.1215/kjm/1250524272
- Vladimir G. Turaev, Quantum invariants of knots and 3-manifolds, Second revised edition, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 2010. MR 2654259, DOI 10.1515/9783110221848
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Bibliographic Information
- Siu-Hung Ng
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 343929
- Email: rng@math.lsu.edu
- Yilong Wang
- Affiliation: Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing 10148, People’s Republic of China
- MR Author ID: 1152161
- ORCID: 0000-0003-4246-683X
- Email: wyl@bimsa.cn
- Samuel Wilson
- Affiliation: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803
- MR Author ID: 1322116
- ORCID: 0000-0002-9269-7647
- Email: swil311@lsu.edu
- Received by editor(s): May 25, 2022
- Received by editor(s) in revised form: June 23, 2022
- Published electronically: January 26, 2023
- Additional Notes: The authors were partially supported by the NSF grant DMS 1664418.
The second author is the corresponding author - Communicated by: Sarah Witherspoon
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1415-1431
- MSC (2020): Primary 18M20, 11F27, 11E08, 20C35
- DOI: https://doi.org/10.1090/proc/16205
- MathSciNet review: 4550339