The $\mathsf {AD}^+$ Conjecture and the Continuum Hypothesis
HTML articles powered by AMS MathViewer
- by Nam Trang;
- Proc. Amer. Math. Soc. 151 (2023), 1775-1786
- DOI: https://doi.org/10.1090/proc/16214
- Published electronically: January 24, 2023
- HTML | PDF | Request permission
Abstract:
We show that Woodin’s $\mathsf {AD}^+$ Conjecture follows from various hypotheses extending the Continuum Hypothesis ($\mathsf {CH}$). These results complement Woodin’s original result that the $\mathsf {AD}^+$ Conjecture follows from $\mathsf {MM}(\mathfrak {c})$.References
- Ilijas Farah, The extender algebra and $\sigma ^2_1$-absoluteness, to appear in the cabal seminar, vol iv, edited by alexander s, Kechris, Benedikt Lowe and John R. Steel.
- Ronald Jensen and John Steel, $K$ without the measurable, J. Symbolic Logic 78 (2013), no. 3, 708–734. MR 3135495
- Alexander S. Kechris, Benedikt Löwe, and John R. Steel (eds.), Games, scales, and Suslin cardinals. The Cabal Seminar. Vol. I, Lecture Notes in Logic, vol. 31, Association for Symbolic Logic, Chicago, IL; Cambridge University Press, Cambridge, 2008. MR 2463612, DOI 10.1017/CBO9780511546488
- Alexander S. Kechris, Benedikt Löwe, and John R. Steel (eds.), Wadge degrees and projective ordinals. The Cabal Seminar. Volume II, Lecture Notes in Logic, vol. 37, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012. MR 2906066
- Alexander S. Kechris, Benedikt Löwe, and John R. Steel (eds.), Ordinal definability and recursion theory. The Cabal Seminar. Vol. III, Lecture Notes in Logic, vol. 43, Association for Symbolic Logic, Ithaca, NY; Cambridge University Press, Cambridge, 2016. Including reprinted papers from the Caltech-UCLA Cabal seminars held in Los Angeles, CA. MR 3410197, DOI 10.1017/CBO9781139519694
- Alexander S. Kechris and Yiannis N. Moschovakis (eds.), Cabal Seminar 76–77, Lecture Notes in Mathematics, vol. 689, Springer, Berlin, 1978. MR 526912
- Alexander S. Kechris, Donald A. Martin, and Yiannis N. Moschovakis (eds.), Cabal Seminar 77–79, Lecture Notes in Mathematics, vol. 839, Springer, Berlin, 1981. MR 611165
- A. S. Kechris, D. A. Martin, and Y. N. Moschovakis (eds.), Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, Springer-Verlag, Berlin, 1983. MR 730583, DOI 10.1007/BFb0071690
- A. S. Kechris, D. A. Martin, and J. R. Steel (eds.), Cabal Seminar 81–85, Lecture Notes in Mathematics, vol. 1333, Springer-Verlag, Berlin, 1988. MR 960892, DOI 10.1007/BFb0084966
- Itay Neeman, Optimal proofs of determinacy, Bull. Symbolic Logic 1 (1995), no. 3, 327–339. MR 1349683, DOI 10.2307/421159
- Itay Neeman, Determinacy in $l(\mathbb {R})$, Handbook of set theory, Springer, 2010, pp. 1877–1950.
- Grigor Sargsyan, Hod mice and the mouse set conjecture, Mem. Amer. Math. Soc. 236 (2015), no. 1111, viii+172. MR 3362806, DOI 10.1090/memo/1111
- Robert M. Solovay, The independence of DC from AD, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 171–183. MR 526918
- J. R. Steel and R. D. Schindler, The core model induction, available at https://ivv5hpp.uni-muenster.de/u/rds/.
- Grigor Sargsyan and Nam Trang, The largest Suslin axiom, Submitted. Available at math.rutgers.edu/~gs481/lsa.pdf.
- J. R. Steel and N. Trang, $\mathsf {AD}^+$, derived models, and $\Sigma _1$-reflection, available athttp://math.berkeley.edu/~steel/papers/Publications.html, 2010.
- F. Schlutzenberg and N. Trang, Scales in hybrid mice over $\mathbb {R}$, Submitted. Available at math.unt.edu/ntrang.
- Grigor Sargsyan and Nam Trang, The exact consistency strength of the generic absoluteness for the universally Baire sets, Available at math.unt.edu/$\sim$ntrang (2019).
- John R. Steel, PFA implies $\textrm {AD}^{L(\Bbb R)}$, J. Symbolic Logic 70 (2005), no. 4, 1255–1296. MR 2194247, DOI 10.2178/jsl/1129642125
- John R. Steel, Derived models associated to mice, Computational prospects of infinity. Part I. Tutorials, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 14, World Sci. Publ., Hackensack, NJ, 2008, pp. 105–193. MR 2449479, DOI 10.1142/9789812794055_{0}003
- J. R. Steel, The derived model theorem, Logic Colloquium 2006, Lect. Notes Log., vol. 32, Assoc. Symbol. Logic, Chicago, IL, 2009, pp. 280–327. MR 2562557, DOI 10.1017/CBO9780511605321.014
- John R. Steel, An outline of inner model theory, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1595–1684. MR 2768698, DOI 10.1007/978-1-4020-5764-9_{2}0
- John Steel, A comparison process for mouse, Cambridge University Press, 2022, DOI 10.1017/9781108886840.
- Grigor Sargsyan, Nam Trang, and Trevor Wilson, Ideals and strong axioms of determinacy, arXiv preprint arXiv:2111.06220, 2021.
- John Steel and Stuart Zoble, Determinacy from strong reflection, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4443–4490. MR 3206466, DOI 10.1090/S0002-9947-2013-06058-8
- Nam Trang, $\mathsf {PFA}$ and guessing models, Israel J. Math. 215 (2016), no. 2, 607–667. MR 3552291, DOI 10.1007/s11856-016-1390-x
- W. Hugh Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, Second revised edition, De Gruyter Series in Logic and its Applications, vol. 1, Walter de Gruyter GmbH & Co. KG, Berlin, 2010. MR 2723878, DOI 10.1515/9783110213171
- W. Hugh Woodin, The equivalence of axiom $(*)^+$ and axiom $(*)^{++}$, to appear.
Bibliographic Information
- Nam Trang
- Affiliation: Department of Mathematics, University of North Texas, Denton, Texas
- MR Author ID: 1067824
- ORCID: 0000-0002-7528-682X
- Email: Nam.Trang@unt.edu
- Received by editor(s): September 20, 2021
- Received by editor(s) in revised form: May 26, 2022, and July 19, 2022
- Published electronically: January 24, 2023
- Additional Notes: The author’s research was partially supported by the NSF Career Award DMS-1945592.
- Communicated by: Vera Fischer
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1775-1786
- MSC (2020): Primary 03E15, 03E45, 03E60
- DOI: https://doi.org/10.1090/proc/16214
- MathSciNet review: 4550369