Weak-type regularity of the Bergman projection on rational Hartogs triangles
HTML articles powered by AMS MathViewer
- by Adam B. Christopherson and Kenneth D. Koenig;
- Proc. Amer. Math. Soc. 151 (2023), 1643-1653
- DOI: https://doi.org/10.1090/proc/16215
- Published electronically: January 30, 2023
- HTML | PDF | Request permission
Abstract:
For the rational power-generalized Hartogs triangles in $\mathbb {C}^2$, we give a complete characterization of the weak-type regularity of the Bergman projection at the upper and lower endpoints of $L^p$ boundedness. Our result extends work of Huo-Wick for the classical Hartogs triangle by showing that the Bergman projection satisfies a weak-type estimate only at the upper endpoint of $L^p$ boundedness.References
- Debraj Chakrabarti and Yunus E. Zeytuncu, $L^p$ mapping properties of the Bergman projection on the Hartogs triangle, Proc. Amer. Math. Soc. 144 (2016), no. 4, 1643–1653. MR 3451240, DOI 10.1090/proc/12820
- Philippe Charpentier and Yves Dupain, Geometry of pseudo-convex domains of finite type with locally diagonalizable Levi form and Bergman kernel, J. Math. Pures Appl. (9) 85 (2006), no. 1, 71–118 (English, with English and French summaries). MR 2200592, DOI 10.1016/j.matpur.2005.10.001
- Liwei Chen, The $L^p$ boundedness of the Bergman projection for a class of bounded Hartogs domains, J. Math. Anal. Appl. 448 (2017), no. 1, 598–610. MR 3579901, DOI 10.1016/j.jmaa.2016.11.024
- L. D. Edholm and J. D. McNeal, The Bergman projection on fat Hartogs triangles: $L^p$ boundedness, Proc. Amer. Math. Soc. 144 (2016), no. 5, 2185–2196. MR 3460177, DOI 10.1090/proc/12878
- L. D. Edholm and J. D. McNeal, Bergman subspaces and subkernels: degenerate $L^p$ mapping and zeroes, J. Geom. Anal. 27 (2017), no. 4, 2658–2683. MR 3707989, DOI 10.1007/s12220-017-9777-4
- Zhenghui Huo and Brett D. Wick, Weak-type estimates for the Bergman projection on the polydisc and the Hartogs triangle, Bull. Lond. Math. Soc. 52 (2020), no. 5, 891–906. MR 4171410, DOI 10.1112/blms.12369
- Kenneth D. Koenig and Yuda Wang, Harmonic Bergman theory on punctured domains, J. Geom. Anal. 31 (2021), no. 7, 7410–7435. MR 4289264, DOI 10.1007/s12220-020-00542-8
- Loredana Lanzani and Elias M. Stein, Szegö and Bergman projections on non-smooth planar domains, J. Geom. Anal. 14 (2004), no. 1, 63–86. MR 2030575, DOI 10.1007/BF02921866
- Loredana Lanzani and Elias M. Stein, The Bergman projection in $L^p$ for domains with minimal smoothness, Illinois J. Math. 56 (2012), no. 1, 127–154 (2013). MR 3117022
- J. D. McNeal and E. M. Stein, Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J. 73 (1994), no. 1, 177–199. MR 1257282, DOI 10.1215/S0012-7094-94-07307-9
- Jeffery D. McNeal, Boundary behavior of the Bergman kernel function in $\textbf {C}^2$, Duke Math. J. 58 (1989), no. 2, 499–512. MR 1016431, DOI 10.1215/S0012-7094-89-05822-5
- Jeffery D. McNeal, The Bergman projection as a singular integral operator, J. Geom. Anal. 4 (1994), no. 1, 91–103. MR 1274139, DOI 10.1007/BF02921594
- A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szegő kernels in $\textbf {C}^2$, Ann. of Math. (2) 129 (1989), no. 1, 113–149. MR 979602, DOI 10.2307/1971487
- D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke Math. J. 44 (1977), no. 3, 695–704. MR 450623, DOI 10.1215/S0012-7094-77-04429-5
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften, vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
- Yunus E. Zeytuncu, $L^p$ regularity of weighted Bergman projections, Trans. Amer. Math. Soc. 365 (2013), no. 6, 2959–2976. MR 3034455, DOI 10.1090/S0002-9947-2012-05686-8
Bibliographic Information
- Adam B. Christopherson
- Affiliation: Department of Mathematics, The Ohio State University, 231 W. 18th Ave, Columbus, Ohio 43210
- Email: christopherson.19@osu.edu
- Kenneth D. Koenig
- Affiliation: Department of Mathematics, The Ohio State University, 231 W. 18th Ave, Columbus, Ohio 43210
- Email: koenig.271@osu.edu
- Received by editor(s): October 26, 2021
- Received by editor(s) in revised form: March 25, 2022, May 25, 2022, and July 26, 2022
- Published electronically: January 30, 2023
- Communicated by: Harold P. Boas
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1643-1653
- MSC (2020): Primary 32A25, 32A36, 32A55
- DOI: https://doi.org/10.1090/proc/16215
- MathSciNet review: 4550358