On quadratic Waring’s problem in totally real number fields
HTML articles powered by AMS MathViewer
- by Jakub Krásenský and Pavlo Yatsyna;
- Proc. Amer. Math. Soc. 151 (2023), 1471-1485
- DOI: https://doi.org/10.1090/proc/16233
- Published electronically: January 13, 2023
- HTML | PDF | Request permission
Abstract:
We improve the bound of the $g$-invariant of the ring of integers of a totally real number field, where the $g$-invariant $g(r)$ is the smallest number of squares of linear forms in $r$ variables that is required to represent all the quadratic forms of rank $r$ that are representable by the sum of squares. Specifically, we prove that the $g_{\mathcal {O}_K}(r)$ of the ring of integers $\mathcal {O}_K$ of a totally real number field $K$ is at most $g_{\mathbb {Z}}([K:\mathbb {Q}]r)$. Moreover, it can also be bounded by $g_{\mathcal {O}_F}([K:F]r+1)$ for any subfield $F$ of $K$. This yields a subexponential upper bound for $g(r)$ of each ring of integers (even if the class number is not $1$). Further, we obtain a more general inequality for the lattice version $G(r)$ of the invariant and apply it to determine the value of $G(2)$ for all but one real quadratic field.References
- R. Baeza, D. Leep, M. O’Ryan, and J. P. Prieto, Sums of squares of linear forms, Math. Z. 193 (1986), no. 2, 297–306. MR 856157, DOI 10.1007/BF01174339
- Constantin N. Beli, Wai Kiu Chan, María Inés Icaza, and Jingbo Liu, On a Waring’s problem for integral quadratic and Hermitian forms, Trans. Amer. Math. Soc. 371 (2019), no. 8, 5505–5527. MR 3937301, DOI 10.1090/tran/7571
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Wai Kiu Chan and María Inés Icaza, Hermite reduction and a Waring’s problem for integral quadratic forms over number fields, Trans. Amer. Math. Soc. 374 (2021), no. 4, 2967–2985. MR 4223039, DOI 10.1090/tran/8298
- M. D. Choi, Z. D. Dai, T. Y. Lam, and B. Reznick, The Pythagoras number of some affine algebras and local algebras, J. Reine Angew. Math. 336 (1982), 45–82. MR 671321, DOI 10.1515/crll.1982.336.45
- Harvey Cohn and Gordon Pall, Sums of four squares in a quadratic ring, Trans. Amer. Math. Soc. 105 (1962), 536–556. MR 142522, DOI 10.1090/S0002-9947-1962-0142522-8
- Jürgen Dzewas, Quadratsummen in reellquadratischen Zahlkörpern, Math. Nachr. 21 (1960), 233–284 (German). MR 112872, DOI 10.1002/mana.19600210309
- Z. He and Y. Hu, Pythagoras number of quartic orders containing $\sqrt {2}$, arXiv:2204.10468, 2022.
- John S. Hsia, Yoshiyuki Kitaoka, and Martin Kneser, Representations of positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132–141. MR 560499, DOI 10.1515/crll.1978.301.132
- Maria Ines Icaza Perez, Effectiveness in representations of positive definite quadratic forms, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–The Ohio State University. MR 2688586
- María Inés Icaza, Sums of squares of integral linear forms, Acta Arith. 74 (1996), no. 3, 231–240. MR 1373710, DOI 10.4064/aa-74-3-231-240
- Martin Kneser, Klassenzahlen definiter quadratischer Formen, Arch. Math. 8 (1957), 241–250 (German). MR 90606, DOI 10.1007/BF01898782
- C. Ko, On the representation of a quadratic form as a sum of squares of linear forms, Q. J. Math. 1, 1 (1937), 81–98.
- Myung-Hwan Kim and Byeong-Kweon Oh, Representations of positive definite senary integral quadratic forms by a sum of squares, J. Number Theory 63 (1997), no. 1, 89–100. MR 1438651, DOI 10.1006/jnth.1997.2069
- Myung-Hwan Kim and Byeong-Kweon Oh, Bounds for quadratic Waring’s problem, Acta Arith. 104 (2002), no. 2, 155–164. MR 1914250, DOI 10.4064/aa104-2-5
- Myung-Hwan Kim and Byeong-Kweon Oh, Representations of integral quadratic forms by sums of squares, Math. Z. 250 (2005), no. 2, 427–442. MR 2178793, DOI 10.1007/s00209-005-0761-5
- Jakub Krásenský, A cubic ring of integers with the smallest Pythagoras number, Arch. Math. (Basel) 118 (2022), no. 1, 39–48. MR 4371163, DOI 10.1007/s00013-021-01662-5
- Jakub Krásenský, Martin Raška, and Ester Sgallová, Pythagoras numbers of orders in biquadratic fields, Expo. Math. 40 (2022), no. 4, 1181–1228. MR 4518649, DOI 10.1016/j.exmath.2022.06.002
- Martin Kneser, Quadratische Formen, Springer-Verlag, Berlin, 2002 (German). Revised and edited in collaboration with Rudolf Scharlau. MR 2788987, DOI 10.1007/978-3-642-56380-5
- Vítězslav Kala and Pavlo Yatsyna, Lifting problem for universal quadratic forms, Adv. Math. 377 (2021), Paper No. 107497, 24. MR 4182914, DOI 10.1016/j.aim.2020.107497
- David B. Leep, A historical view of the Pythagoras numbers of fields, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 271–288. MR 2537106, DOI 10.1090/conm/493/09674
- J. Liu, g-Invariant on unary Hermitian lattices over imaginary quadratic fields with class number 2 or 3, arXiv:2111.10825, 2021.
- Jingbo Liu, On a Waring’s problem for Hermitian lattices, Bull. Sci. Math. 174 (2022), Paper No. 102970, 25. MR 4369616, DOI 10.1016/j.bulsci.2021.102970
- Hans Maass, Über die Darstellung total positiver Zahlen des Körpers $R(5)$ als Summe von drei Quadraten, Abh. Math. Sem. Hansischen Univ. 14 (1941), 185–191 (German). MR 5505, DOI 10.1007/BF02940744
- L. J. Mordell, A new Waring’s problem with squares of linear forms, Q. J. Math. 1 (1930), 276–288.
- L. J. Mordell, On the representation of a binary quadratic form as a sum of squares of linear forms, Math. Z. 35 (1932), no. 1, 1–15. MR 1545284, DOI 10.1007/BF01186544
- L. J. Mordell, The representation of a definite quadratic form as a sum of two others, Ann. of Math. (2) 38 (1937), no. 4, 751–757. MR 1503366, DOI 10.2307/1968831
- Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, Berlin; PWN—Polish Scientific Publishers, Warsaw, 1990. MR 1055830
- Meinhard Peters, Quadratische Formen über Zahlringen, Acta Arith. 24 (1973), 157–164 (German). MR 340176, DOI 10.4064/aa-24-2-157-164
- Albrecht Pfister, Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series, vol. 217, Cambridge University Press, Cambridge, 1995. MR 1366652, DOI 10.1017/CBO9780511526077
- Hideyo Sasaki, Sums of squares of integral linear forms, J. Austral. Math. Soc. Ser. A 69 (2000), no. 3, 298–302. MR 1793954, DOI 10.1017/S1446788700002470
- H. Sasaki, Sums of squares of totally positive definite quadratic forms over real quadratic field $\mathbb {Q}(\sqrt {5})$ (Japanese), Otemae Junior Coll. Res. Bull. 25 (2005) 407–412.
- Rudolf Scharlau, On the Pythagoras number of orders in totally real number fields, J. Reine Angew. Math. 316 (1980), 208–210. MR 581331, DOI 10.1515/crll.1980.316.208
- R. Scharlau, Zur Darstellbarkeit von totalreellen ganzen algebraischen Zahlen durch Summen von Quadraten, Dissertation, Universität Bielefeld, 1979.
- M. Tinková, On the Pythagoras number of the simplest cubic fields, arXiv:2101.11384, 2021.
Bibliographic Information
- Jakub Krásenský
- Affiliation: Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Praha 8, Czech Republic
- ORCID: 0000-0001-7142-0959
- Email: krasensky@karlin.mff.cuni.cz
- Pavlo Yatsyna
- Affiliation: Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, FI-00076, Finland; and Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Praha 8, Czech Republic
- MR Author ID: 1047455
- ORCID: 0000-0003-2298-8446
- Email: pavlo.yatsyna@aalto.fi
- Received by editor(s): February 1, 2022
- Received by editor(s) in revised form: July 4, 2022, and August 14, 2022
- Published electronically: January 13, 2023
- Additional Notes: The first author was partially supported by project PRIMUS/20/SCI/002 from Charles University, by Czech Science Foundation GAČR, grant 21-00420M, by projects UNCE/SCI/022 and GA UK No. 742120 from Charles University, and by SVV-2020-260589.
The second author was supported by the project PRIMUS/20/SCI/002 from Charles University and by the Academy of Finland (grants #336005 and #351271, Principal Investigator C. Hollanti). - Communicated by: Amanda Folsom
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1471-1485
- MSC (2020): Primary 11E12, 11D85, 11E25, 11E39
- DOI: https://doi.org/10.1090/proc/16233
- MathSciNet review: 4550343