On extension of uniformly continuous quasiconvex functions
HTML articles powered by AMS MathViewer
- by Carlo Alberto De Bernardi and Libor Veselý;
- Proc. Amer. Math. Soc. 151 (2023), 1705-1716
- DOI: https://doi.org/10.1090/proc/16234
- Published electronically: January 24, 2023
- HTML | PDF | Request permission
Abstract:
We show that each uniformly continuous quasiconvex function defined on a subspace of a normed space $X$ admits a uniformly continuous quasiconvex extension to the whole $X$ with the same “invertible modulus of continuity”. This implies an analogous extension result for Lipschitz quasiconvex functions, preserving the Lipschitz constant.
We also show that each uniformly continuous quasiconvex function defined on a uniformly convex set $A\subset X$ admits a uniformly continuous quasiconvex extension to the whole $X$. However, our extension need not preserve moduli of continuity in this case, and a Lipschitz quasiconvex function on $A$ may admit no Lipschitz quasiconvex extension to $X$ at all.
References
- Kenneth J. Arrow and Alain C. Enthoven, Quasi-concave programming, Econometrica 29 (1961), 779–800. MR 138509, DOI 10.2307/1911819
- Mordecai Avriel, Walter E. Diewert, Siegfried Schaible, and Israel Zang, Generalized concavity, Classics in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. Reprint of the 1988 original [ MR0927084]. MR 3396214, DOI 10.1137/1.9780898719437.ch1
- Maxim V. Balashov and Dušan Repovš, Uniform convexity and the splitting problem for selections, J. Math. Anal. Appl. 360 (2009), no. 1, 307–316. MR 2548385, DOI 10.1016/j.jmaa.2009.06.045
- C. A. De Bernardi and L. Veselý, Extendability of continuous quasiconvex functions from subspaces, preprint, arXiv:2212.13789 [math.FA], 2022, DOI 10.48550/arXiv.2212.13789.
- C. A. De Bernardi and L. Veselý, Rotundity properties, and non-extendability of Lipschitz quasiconvex functions, to appear in J. Convex Anal. 30 (2023).
- H. Greenberg and W. Pierskalla, A review of quasi-convex functions, Oper. Res. 19 (1971), 1553–1570.
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9
- Göte Nordlander, The modulus of convexity in normed linear spaces, Ark. Mat. 4 (1960), 15–17 (1960). MR 140915, DOI 10.1007/BF02591317
- Jean-Paul Penot, What is quasiconvex analysis?, Optimization 47 (2000), no. 1-2, 35–110. CODE Workshop on Generalized Convexity and Monotonicity in Economic Modeling (Bellaterra, 1998). MR 1755580, DOI 10.1080/02331930008844469
- B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. 7 (1966), 72–75.
Bibliographic Information
- Carlo Alberto De Bernardi
- Affiliation: Dipartimento di Matematica per le Scienze economiche, finanziarie ed attuariali, Università Cattolica del Sacro Cuore, 20123 Milano, Italy
- MR Author ID: 873883
- Email: carloalberto.debernardi@unicatt.it, carloalberto.debernardi@gmail.com
- Libor Veselý
- Affiliation: Dipartimento di Matematica, Università degli Studi, Via C. Saldini 50, 20133 Milano, Italy
- ORCID: 0000-0001-7430-4398
- Email: libor.vesely@unimi.it
- Received by editor(s): May 6, 2022
- Received by editor(s) in revised form: August 18, 2022, and August 20, 2022
- Published electronically: January 24, 2023
- Additional Notes: The research of the first author was partially supported by the GNAMPA (INdAM – Istituto Nazionale di Alta Matematica) Research Project 2020 and by the Ministry for Science and Innovation, Spanish State Research Agency (Spain), under project PID2020-112491GB-I00.
The research of the second author was partially supported by the GNAMPA (INdAM – Istituto Nazionale di Alta Matematica) Research Project 2020 and by the University of Milan, Research Support Plan PSR 2020. - Communicated by: Stephen Dilworth
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1705-1716
- MSC (2020): Primary 26B25, 52A05; Secondary 46A55, 52A99
- DOI: https://doi.org/10.1090/proc/16234
- MathSciNet review: 4550363