Dense quasi-free subalgebras of the Toeplitz algebra
HTML articles powered by AMS MathViewer
- by A. Yu. Pirkovskii;
- Proc. Amer. Math. Soc. 151 (2023), 1681-1696
- DOI: https://doi.org/10.1090/proc/16266
- Published electronically: January 26, 2023
- HTML | PDF | Request permission
Abstract:
We introduce a family of dense subalgebras of the Toeplitz algebra and give conditions under which our algebras are quasi-free. As a corollary, we show that the smooth Toeplitz algebra introduced by Cuntz is quasi-free.References
- O. Yu. Aristov, A global dimension theorem for nonunital and some other separable $C^*$-algebras, Mat. Sb. 186 (1995), no. 9, 3–18 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 9, 1223–1239. MR 1360184, DOI 10.1070/SM1995v186n09ABEH000065
- B. Blackadar and J. Cuntz, Differential Banach algebra norms and smooth subalgebras of $C^*$-algebras, J. Operator Theory 26 (1991), no. 2, 255–282. MR 1225517
- Oren Ben-Bassat and Kobi Kremnizer, Non-Archimedean analytic geometry as relative algebraic geometry, Ann. Fac. Sci. Toulouse Math. (6) 26 (2017), no. 1, 49–126 (English, with English and French summaries). MR 3626003, DOI 10.5802/afst.1526
- Alexey Bondal and Ilya Zhdanovskiy, Coherence of relatively quasi-free algebras, Eur. J. Math. 1 (2015), no. 4, 695–703. MR 3426174, DOI 10.1007/s40879-015-0081-1
- P. Bonneau, M. Flato, M. Gerstenhaber, and G. Pinczon, The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations, Comm. Math. Phys. 161 (1994), no. 1, 125–156. MR 1266072, DOI 10.1007/BF02099415
- Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR 823176
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Alain Connes and Henri Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), no. 3, 345–388. MR 1066176, DOI 10.1016/0040-9383(90)90003-3
- Joachim Cuntz, $K$-theory and $C^{\ast }$-algebras, Algebraic $K$-theory, number theory, geometry and analysis (Bielefeld, 1982) Lecture Notes in Math., vol. 1046, Springer, Berlin, 1984, pp. 55–79. MR 750677, DOI 10.1007/BFb0072018
- Joachim Cuntz, Bivariante $K$-Theorie für lokalkonvexe Algebren und der Chern-Connes-Charakter, Doc. Math. 2 (1997), 139–182 (German, with English summary). MR 1456322, DOI 10.4171/dm/26
- Joachim Cuntz, Cyclic theory and the bivariant Chern-Connes character, Noncommutative geometry, Lecture Notes in Math., vol. 1831, Springer, Berlin, 2004, pp. 73–135. MR 2058473, DOI 10.1007/978-3-540-39702-1_{2}
- Joachim Cuntz and Daniel Quillen, Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 (1995), no. 2, 251–289. MR 1303029, DOI 10.1090/S0894-0347-1995-1303029-0
- Joachim Cuntz and Daniel Quillen, Cyclic homology and nonsingularity, J. Amer. Math. Soc. 8 (1995), no. 2, 373–442. MR 1303030, DOI 10.1090/S0894-0347-1995-1303030-7
- Joachim Cuntz and Daniel Quillen, Excision in bivariant periodic cyclic cohomology, Invent. Math. 127 (1997), no. 1, 67–98. MR 1423026, DOI 10.1007/s002220050115
- Joachim Cuntz, Ralf Meyer, and Jonathan M. Rosenberg, Topological and bivariant $K$-theory, Oberwolfach Seminars, vol. 36, Birkhäuser Verlag, Basel, 2007. MR 2340673
- Kenneth R. Davidson, $C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012, DOI 10.1090/fim/006
- Warren Dicks, Mayer-Vietoris presentations over colimits of rings, Proc. London Math. Soc. (3) 34 (1977), no. 3, 557–576. MR 444709, DOI 10.1112/plms/s3-34.3.557
- Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343. MR 1140607, DOI 10.1016/0021-8693(91)90107-J
- V. Ginzburg, Lectures on noncommutative geometry, arXiv:math/0506603 [math.AG], 2005.
- A. Ja. Helemskiĭ, The global dimension of a functional Banach algebra is different from one, Funkcional. Anal. i Priložen. 6 (1972), no. 2, 95–96 (Russian). MR 305072
- A. Ya. Helemskii, The homology of Banach and topological algebras, Mathematics and its Applications (Soviet Series), vol. 41, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by Alan West. MR 1093462, DOI 10.1007/978-94-009-2354-6
- Nigel Higson, Algebraic $K$-theory of stable $C^*$-algebras, Adv. in Math. 67 (1988), no. 1, 140. MR 922140, DOI 10.1016/0001-8708(88)90034-5
- Bernhard Keller, Derived categories and their uses, Handbook of algebra, Vol. 1, Handb. Algebr., vol. 1, Elsevier/North-Holland, Amsterdam, 1996, pp. 671–701. MR 1421815, DOI 10.1016/S1570-7954(96)80023-4
- Masoud Khalkhali, Basic noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2009. MR 2567651, DOI 10.4171/061
- Lieven Le Bruyn, Noncommutative geometry and Cayley-smooth orders, Pure and Applied Mathematics (Boca Raton), vol. 290, Chapman & Hall/CRC, Boca Raton, FL, 2008. MR 2356702
- R. Meyer, Analytic cyclic cohomology, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, arXiv:math.KT/9906205, 1999.
- Ralf Meyer, Excision in entire cyclic cohomology, J. Eur. Math. Soc. (JEMS) 3 (2001), no. 3, 269–286. MR 1848947, DOI 10.1007/s100970100035
- Ralf Meyer, Combable groups have group cohomology of polynomial growth, Q. J. Math. 57 (2006), no. 2, 241–261. MR 2237601, DOI 10.1093/qmath/hai003
- R. Meyer, Embeddings of derived categories of bornological modules, arXiv:math.FA/0410596, 2004.
- Ralf Meyer, Local and analytic cyclic homology, EMS Tracts in Mathematics, vol. 3, European Mathematical Society (EMS), Zürich, 2007. MR 2337277, DOI 10.4171/039
- Gerard J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990. MR 1074574
- A. Neeman and A. Ranicki, Noncommutative localization and chain complexes. I. Algebraic $K$- and $L$-theory, arXiv:math.RA/0109118, 2001.
- K. Panarin, The Pimsner-Voiculescu exact sequence for the $K$-theory of holomorphic crossed products, Master thesis, HSE University, Faculty of Mathematics, 2017.
- N. Christopher Phillips, $K$-theory for Fréchet algebras, Internat. J. Math. 2 (1991), no. 1, 77–129. MR 1082838, DOI 10.1142/S0129167X91000077
- Albrecht Pietsch, Zur Theorie der topologischen Tensorprodukte, Math. Nachr. 25 (1963), 19–30 (German). MR 152856, DOI 10.1002/mana.19630250104
- Albrecht Pietsch, Nuclear locally convex spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 66, Springer-Verlag, New York-Heidelberg, 1972. Translated from the second German edition by William H. Ruckle. MR 350360
- A. Yu. Pirkovskiĭ, Arens-Michael envelopes, homological epimorphisms, and relatively quasifree algebras, Tr. Mosk. Mat. Obs. 69 (2008), 34–125 (Russian, with Russian summary); English transl., Trans. Moscow Math. Soc. (2008), 27–104. MR 2549445, DOI 10.1090/S0077-1554-08-00169-6
- A. Yu. Pirkovskiĭ, Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras, Izv. Ross. Akad. Nauk Ser. Mat. 76 (2012), no. 4, 65–124 (Russian, with Russian summary); English transl., Izv. Math. 76 (2012), no. 4, 702–759. MR 3013272, DOI 10.1070/IM2012v076n04ABEH002603
- Daniel G. Quillen and Gordon Blower, Topics in cyclic theory, London Mathematical Society Student Texts, vol. 97, Cambridge University Press, Cambridge, 2020. MR 4411366, DOI 10.1017/9781108855846
- William F. Schelter, Smooth algebras, J. Algebra 103 (1986), no. 2, 677–685. MR 864437, DOI 10.1016/0021-8693(86)90160-2
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 389953, DOI 10.1007/978-3-642-66066-5
- Joseph L. Taylor, A general framework for a multi-operator functional calculus, Advances in Math. 9 (1972), 183–252. MR 328625, DOI 10.1016/0001-8708(72)90017-5
- Christian Voigt, Equivariant periodic cyclic homology, J. Inst. Math. Jussieu 6 (2007), no. 4, 689–763. MR 2337312, DOI 10.1017/S1474748007000102
- Christian Voigt, Equivariant local cyclic homology and the equivariant Chern-Connes character, Doc. Math. 12 (2007), 313–359. MR 2365905, DOI 10.4171/dm/227
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Sarah J. Witherspoon, Hochschild cohomology for algebras, Graduate Studies in Mathematics, vol. 204, American Mathematical Society, Providence, RI, [2019] ©2019. MR 3971234, DOI 10.1090/gsm/204
Bibliographic Information
- A. Yu. Pirkovskii
- Affiliation: Faculty of Mathematics, HSE University, 6 Usacheva, 119048 Moscow, Russia
- MR Author ID: 641707
- Email: aupirkovskii@hse.ru
- Received by editor(s): December 4, 2021
- Received by editor(s) in revised form: August 17, 2022
- Published electronically: January 26, 2023
- Additional Notes: This work was supported by the RFBR grant no. 19-01-00447.
- Communicated by: Adrian Ioana
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1681-1696
- MSC (2020): Primary 46M18, 47L40, 46H99, 46A45, 16E10
- DOI: https://doi.org/10.1090/proc/16266
- MathSciNet review: 4550361