The semidiscrete damped wave equation with a fractional Laplacian
HTML articles powered by AMS MathViewer
- by Carlos Lizama and Marina Murillo-Arcila;
- Proc. Amer. Math. Soc. 151 (2023), 1987-1999
- DOI: https://doi.org/10.1090/proc/16231
- Published electronically: February 28, 2023
- HTML | PDF | Request permission
Abstract:
In this paper we completely solve the open problem of finding the fundamental solution of the semidiscrete fractional-spatial damped wave equation. We combine operator theory and Laplace transform methods with properties of Bessel functions to show an explicit representation of the solution when initial conditions are given. Our findings extend known results from the literature and also provide new insights into the qualitative behavior of the solutions for the studied model. As an example, we show the existence of almost periodic solutions as well as their profile in the homogeneous case.References
- Luciano Abadias, Jorge González-Camus, Pedro J. Miana, and Juan C. Pozo, Large time behaviour for the heat equation on $\Bbb {Z}$, moments and decay rates, J. Math. Anal. Appl. 500 (2021), no. 2, Paper No. 125137, 25. MR 4232677, DOI 10.1016/j.jmaa.2021.125137
- H. Bateman, Some simple differential difference equations and the related functions, Bull. Amer. Math. Soc. 49 (1943), 494–512. MR 8886, DOI 10.1090/S0002-9904-1943-07927-X
- Salomon Bochner, Curvature and Betti numbers in real and complex vector bundles, Univ. e Politec. Torino Rend. Sem. Mat. 15 (1955/56), 225–253. MR 84160
- Óscar Ciaurri, T. Alastair Gillespie, Luz Roncal, José L. Torrea, and Juan Luis Varona, Harmonic analysis associated with a discrete Laplacian, J. Anal. Math. 132 (2017), 109–131. MR 3666807, DOI 10.1007/s11854-017-0015-6
- Óscar Ciaurri, Luz Roncal, Pablo Raúl Stinga, José L. Torrea, and Juan Luis Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math. 330 (2018), 688–738. MR 3787555, DOI 10.1016/j.aim.2018.03.023
- C. Corduneanu, Almost periodic functions, Interscience Tracts in Pure and Applied Mathematics, No. 22, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968. With the collaboration of N. Gheorghiu and V. Barbu; Translated from the Romanian by Gitta Bernstein and Eugene Tomer. MR 481915
- M. D’Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p$–$L^q$ framework, J. Differential Equations 256 (2014), no. 7, 2307–2336. MR 3160444, DOI 10.1016/j.jde.2014.01.002
- M. D’Abbicco, M. R. Ebert, and T. Picon, Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation, J. Pseudo-Differ. Oper. Appl. 7 (2016), no. 2, 261–293. MR 3503292, DOI 10.1007/s11868-015-0141-9
- Marcello D’Abbicco and Ryo Ikehata, Asymptotic profile of solutions for strongly damped Klein-Gordon equations, Math. Methods Appl. Sci. 42 (2019), no. 7, 2287–2301. MR 3936400, DOI 10.1002/mma.5508
- A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. I, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. MR 61695
- Avraham Feintuch and Bruce Francis, Infinite chains of kinematic points, Automatica J. IFAC 48 (2012), no. 5, 901–908. MR 2912816, DOI 10.1016/j.automatica.2012.02.034
- W. E. Fitzgibbon, Limiting behavior of the strongly damped extensible beam equation, Differential Integral Equations 3 (1990), no. 6, 1067–1076. MR 1073057, DOI 10.57262/die/1379101978
- Michal Friesl, Antonín Slavík, and Petr Stehlík, Discrete-space partial dynamic equations on time scales and applications to stochastic processes, Appl. Math. Lett. 37 (2014), 86–90. MR 3231732, DOI 10.1016/j.aml.2014.06.002
- Jorge González-Camus, Carlos Lizama, and Pedro J. Miana, Fundamental solutions for semidiscrete evolution equations via Banach algebras, Adv. Difference Equ. , posted on (2021), Paper No. 35, 32. MR 4197351, DOI 10.1186/s13662-020-03206-7
- Jorge González-Camus, Valentin Keyantuo, Carlos Lizama, and Mahamadi Warma, Fundamental solutions for discrete dynamical systems involving the fractional Laplacian, Math. Methods Appl. Sci. 42 (2019), no. 14, 4688–4711. MR 3992934, DOI 10.1002/mma.5685
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
- Valentin Keyantuo, Carlos Lizama, and Mahamadi Warma, Lattice dynamical systems associated with a fractional Laplacian, Numer. Funct. Anal. Optim. 40 (2019), no. 11, 1315–1343. MR 3949124, DOI 10.1080/01630563.2019.1602542
- Carlos Lizama and Luz Roncal, Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian, Discrete Contin. Dyn. Syst. 38 (2018), no. 3, 1365–1403. MR 3808998, DOI 10.3934/dcds.2018056
- J. L. Padgett, E. G. Kostadinova, C. D. Liaw, K. Busse, L. S. Matthews, and T. W. Hyde, Anomalous diffusion in one-dimensional disordered systems: a discrete fractional Laplacian method, J. Phys. A 53 (2020), no. 13, 135205, 21. MR 4084256, DOI 10.1088/1751-8121/ab7499
- Carl E. Pearson, Asymptotic behavior of solutions to the finite-difference wave equation, Math. Comp. 23 (1969), 711–715. MR 264862, DOI 10.1090/S0025-5718-1969-0264862-4
- Gustavo Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal. 9 (1985), no. 5, 399–418. MR 785713, DOI 10.1016/0362-546X(85)90001-X
- Jan Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. MR 1238939, DOI 10.1007/978-3-0348-8570-6
- N. B. Salem, Space-time fractional diffusion equation associated with Jacobi expansions, Appl. Anal. (2022), To appear.
- Antonín Slavík, Mixing problems with many tanks, Amer. Math. Monthly 120 (2013), no. 9, 806–821. MR 3115442, DOI 10.4169/amer.math.monthly.120.09.806
- Antonín Slavík and Petr Stehlík, Dynamic diffusion-type equations on discrete-space domains, J. Math. Anal. Appl. 427 (2015), no. 1, 525–545. MR 3318214, DOI 10.1016/j.jmaa.2015.02.056
- Antonín Slavík, Asymptotic behavior of solutions to the semidiscrete diffusion equation, Appl. Math. Lett. 106 (2020), 106392, 7. MR 4090371, DOI 10.1016/j.aml.2020.106392
- Antonín Slavík, Asymptotic behavior of solutions to the multidimensional semidiscrete diffusion equation, Electron. J. Qual. Theory Differ. Equ. (2022), Paper No. 9, 9. MR 4400927
- Vasily E. Tarasov, Exact discretization of fractional Laplacian, Comput. Math. Appl. 73 (2017), no. 5, 855–863. MR 3610953, DOI 10.1016/j.camwa.2017.01.012
- R. Triggiani, Regularity of some structurally damped problems with point control and with boundary control, J. Math. Anal. Appl. 161 (1991), no. 2, 299–331. MR 1132109, DOI 10.1016/0022-247X(91)90332-T
Bibliographic Information
- Carlos Lizama
- Affiliation: Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Las Sophoras 173, Estación Central, Santiago, Chile
- MR Author ID: 114975
- ORCID: 0000-0002-9807-1100
- Email: carlos.lizama@usach.cl
- Marina Murillo-Arcila
- Affiliation: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain
- MR Author ID: 998995
- ORCID: 0000-0001-6589-0452
- Email: mamuar1@upv.es
- Received by editor(s): July 12, 2022
- Received by editor(s) in revised form: August 10, 2022, and August 12, 2022
- Published electronically: February 28, 2023
- Additional Notes: The first author was partially supported by ANID Project Fondecyt 1220036 and Generalitat Valenciana, Project PROMETEU/2021/070. The second author was supported by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GB-I00, and by Generalitat Valenciana, Project PROMETEU/2021/070.
- Communicated by: Ariel Barton
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1987-1999
- MSC (2020): Primary 35R11; Secondary 39A06, 26A33, 44A10
- DOI: https://doi.org/10.1090/proc/16231
- MathSciNet review: 4556194