Zeros of derivatives of $L$-functions in the Selberg class on $\Re (s)<1/2$
HTML articles powered by AMS MathViewer
- by Sneha Chaubey, Suraj Singh Khurana and Ade Irma Suriajaya;
- Proc. Amer. Math. Soc. 151 (2023), 1855-1866
- DOI: https://doi.org/10.1090/proc/16251
- Published electronically: February 17, 2023
- HTML | PDF | Request permission
Abstract:
In this article, we show that the Riemann hypothesis for an $L$-function $F$ belonging to the Selberg class implies that all the derivatives of $F$ can have at most finitely many zeros on the left of the critical line with imaginary part greater than a certain constant. This was shown for the Riemann zeta function by Levinson and Montgomery in 1974 [Acta Math. 133 (1974), pp. 49–65].References
- Hirotaka Akatsuka and Ade Irma Suriajaya, Zeros of the first derivative of Dirichlet $L$-functions, J. Number Theory 184 (2018), 300–329. MR 3724167, DOI 10.1016/j.jnt.2017.08.023
- Ramūnas Garunk tis, Zeros of the extended Selberg class zeta-functions and of their derivatives, Turkish J. Math. 43 (2019), no. 6, 2921–2930. MR 4038389, DOI 10.3906/mat-1904-36
- Ramūnas Garunk tis and Raivydas Šimėnas, On the Speiser equivalent for the Riemann hypothesis, Eur. J. Math. 1 (2015), no. 2, 337–350. MR 3386244, DOI 10.1007/s40879-014-0033-1
- J. Hadamard, Sur la distribution des zéros de la fonction $\zeta (s)$ et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199–220 (French). MR 1504264, DOI 10.24033/bsmf.545
- A. S. B. Holland, Introduction to the theory of entire functions, Pure and Applied Mathematics, Vol. 56, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 447572
- Jerzy Kaczorowski, Axiomatic theory of $L$-functions: the Selberg class, Analytic number theory, Lecture Notes in Math., vol. 1891, Springer, Berlin, 2006, pp. 133–209. MR 2277660, DOI 10.1007/978-3-540-36364-4_{4}
- J. Kaczorowski and A. Perelli, On the prime number theorem for the Selberg class, Arch. Math. (Basel) 80 (2003), no. 3, 255–263. MR 1981179
- Li Zheng, A concise survey of the Selberg class of $L$-functions, https://personal.math.ubc.ca/~gerg/teaching/613-Winter2011/SelbergClass.pdf, 2011.
- Norman Levinson and Hugh L. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 133 (1974), 49–65. MR 417074, DOI 10.1007/BF02392141
- la Vallée Poussin, Charles-Jean de, Recherches analytiques sur la théorie des nombres premiers, Annales de la Société scientifique de Bruxelles, Imprimeur de l’Académie Royale de Belgique, 20 B, 21 B: 183–256, 281–352, 363–397, 351–368.
- Alberto Perelli, A survey of the Selberg class of $L$-functions. II, Riv. Mat. Univ. Parma (7) 3* (2004), 83–118. MR 2128842
- Alberto Perelli, A survey of the Selberg class of $L$-functions. I, Milan J. Math. 73 (2005), 19–52. MR 2175035, DOI 10.1007/s00032-005-0037-x
- Bernhard Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie, pages 671–680, 1859.
- Atle Selberg, Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989) Univ. Salerno, Salerno, 1992, pp. 367–385. MR 1220477
- Raivydas Šimėnas, Zeros of the higher-order derivatives of the functions belonging to the extended Selberg class, Lith. Math. J. 61 (2021), no. 1, 87–95. MR 4230681, DOI 10.1007/s10986-020-09498-2
- Rasa Šleževičienė, Speiser’s correspondence between the zeros of a function and its derivative in Selberg’s class of Dirichlet series, Fiz. Mat. Fak. Moksl. Semin. Darb. 6 (2003), 142–153 (English, with English and Lithuanian summaries). MR 2026098
- Andreas Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1935), no. 1, 514–521 (German). MR 1512953, DOI 10.1007/BF01448042
- Robert Spira, Zero-free regions of $\zeta ^{(k)}(s)$, J. London Math. Soc. 40 (1965), 677–682. MR 181621, DOI 10.1112/jlms/s1-40.1.677
- Robert Spira, Another zero-free region for $\zeta ^{(k)}\,(s)$, Proc. Amer. Math. Soc. 26 (1970), 246–247. MR 263754, DOI 10.1090/S0002-9939-1970-0263754-4
- Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton Lectures in Analysis, vol. 2, Princeton University Press, Princeton, NJ, 2003. MR 1976398
- Jörn Steuding, Value-distribution of $L$-functions, Lecture Notes in Mathematics, vol. 1877, Springer, Berlin, 2007. MR 2330696
- Cem Yalçın Yıldırım, Zeros of derivatives of Dirichlet $L$-functions, Turkish J. Math. 20 (1996), no. 4, 521–534 (English, with English and Turkish summaries). MR 1432879
Bibliographic Information
- Sneha Chaubey
- Affiliation: Department of Mathematics, Indraprastha Institute of Information Technology Delhi, New Delhi - 110020, India
- MR Author ID: 1081961
- Email: sneha@iiitd.ac.in
- Suraj Singh Khurana
- Affiliation: Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Uttar Pradesh – 208016, India
- MR Author ID: 1325741
- Email: suraj.singh.khurana@gmail.com
- Ade Irma Suriajaya
- Affiliation: Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- MR Author ID: 1127084
- ORCID: 0000-0003-3386-0990
- Email: adeirmasuriajaya@math.kyushu-u.ac.jp
- Received by editor(s): February 28, 2022
- Received by editor(s) in revised form: July 24, 2022, and August 21, 2022
- Published electronically: February 17, 2023
- Additional Notes: Research of the first author was supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India under grant SB/S2/RJN-053/2018. The second author was supported by National Board for Higher Mathematics (NBHM), Department of Atomic Energy (DAE), Government of India (DAE Ref no: 0204/37/2021/R&D-II/15564). Research of the third author was supported by JSPS KAKENHI Grant Number 18K13400 and MEXT Initiative for Realizing Diversity in the Research Environment.
- Communicated by: Amanda Folsom
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1855-1866
- MSC (2020): Primary 11M41
- DOI: https://doi.org/10.1090/proc/16251
- MathSciNet review: 4556183