Bi-Lipschitz embeddings of quasiconformal trees
HTML articles powered by AMS MathViewer
- by Guy C. David, Sylvester Eriksson-Bique and Vyron Vellis;
- Proc. Amer. Math. Soc. 151 (2023), 2031-2044
- DOI: https://doi.org/10.1090/proc/16252
- Published electronically: February 2, 2023
- HTML | PDF
Abstract:
A quasiconformal tree is a doubling metric tree in which the diameter of each arc is bounded above by a fixed multiple of the distance between its endpoints. In this paper we show that every quasiconformal tree bi-Lipschitz embeds in some Euclidean space, with the ambient dimension and the bi-Lipschitz constant depending only on the doubling and bounded turning constants of the tree. This answers Question 1.6 of David and Vellis [Illinois J. Math. 66 (2022), pp. 189–244].References
- Patrice Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans $\textbf {R}^{n}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 15, A731–A734 (French, with English summary). MR 532401
- Mario Bonk and Daniel Meyer, Quasiconformal and geodesic trees, Fund. Math. 250 (2020), no. 3, 253–299. MR 4107537, DOI 10.4064/fm749-7-2019
- Mario Bonk and Daniel Meyer, Uniformly branching trees, preprint, arXiv:2004.07912, 2020.
- Guy C. David and Vyron Vellis, Bi-Lipschitz geometry of quasiconformal trees, Illinois J. Math. 66 (2022), no. 2, 189–244. MR 4438056, DOI 10.1215/00192082-9936324
- A. Gupta, R. Krauthgamer, and J. R. Lee, Bounded geometries, fractals, and low-distortion embeddings, 44th Symposium on Foundations of Computer Science (2003), 534–543.
- Anupam Gupta and Kunal Talwar, Making doubling metrics geodesic, Algorithmica 59 (2011), no. 1, 66–80. MR 2754982, DOI 10.1007/s00453-010-9397-x
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Kyle Kinneberg, Conformal dimension and boundaries of planar domains, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6511–6536. MR 3660231, DOI 10.1090/tran/6944
- T. J. Laakso, Ahlfors $Q$-regular spaces with arbitrary $Q>1$ admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000), no. 1, 111–123. MR 1748917, DOI 10.1007/s000390050003
- Urs Lang and Conrad Plaut, Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata 87 (2001), no. 1-3, 285–307. MR 1866853, DOI 10.1023/A:1012093209450
- James R. Lee, Assaf Naor, and Yuval Peres, Trees and Markov convexity, Geom. Funct. Anal. 18 (2009), no. 5, 1609–1659. MR 2481738, DOI 10.1007/s00039-008-0689-0
- Jiří Matoušek, On embedding trees into uniformly convex Banach spaces, Israel J. Math. 114 (1999), 221–237. MR 1738681, DOI 10.1007/BF02785579
- D. R. McMillan Jr., Taming Cantor sets in $E^{n}$, Bull. Amer. Math. Soc. 70 (1964), 706–708. MR 164331, DOI 10.1090/S0002-9904-1964-11177-0
- Assaf Naor and Ofer Neiman, Assouad’s theorem with dimension independent of the snowflaking, Rev. Mat. Iberoam. 28 (2012), no. 4, 1123–1142. MR 2990137, DOI 10.4171/RMI/706
- Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60 (French, with English summary). MR 979599, DOI 10.2307/1971484
Bibliographic Information
- Guy C. David
- Affiliation: Department of Mathematical Sciences, Ball State University, Muncie, Indiana 47306
- MR Author ID: 1103461
- ORCID: 0000-0002-0652-6658
- Email: gcdavid@bsu.edu
- Sylvester Eriksson-Bique
- Affiliation: Research Unit of Mathematical Sciences, P.O.Box 3000, FI-90014 Oulu, Finland
- MR Author ID: 945674
- ORCID: 0000-0002-1919-6475
- Email: sylvester.eriksson-bique@oulu.fi
- Vyron Vellis
- Affiliation: Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37966
- MR Author ID: 1058764
- ORCID: 0000-0003-2297-7202
- Email: vvellis@utk.edu
- Received by editor(s): March 3, 2022
- Received by editor(s) in revised form: August 11, 2022, and August 31, 2022
- Published electronically: February 2, 2023
- Additional Notes: The first author was partially supported by NSF DMS grants 1758709 and 2054004. The second author was partially supported by the Finnish Academy grant 345005. The third author was partially supported by NSF DMS grant 1952510.
- Communicated by: Nageswari Shanmugalingam
- © Copyright 2023 by the authors
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2031-2044
- MSC (2020): Primary 30L05
- DOI: https://doi.org/10.1090/proc/16252
- MathSciNet review: 4556198