Inverse problems for semilinear elliptic PDE with measurements at a single point
HTML articles powered by AMS MathViewer
- by Mikko Salo and Leo Tzou;
- Proc. Amer. Math. Soc. 151 (2023), 2023-2030
- DOI: https://doi.org/10.1090/proc/16255
- Published electronically: February 10, 2023
- HTML | PDF | Request permission
Abstract:
We consider the inverse problem of determining a potential in a semilinear elliptic equation from the knowledge of the Dirichlet-to-Neumann map. For bounded Euclidean domains we prove that the potential is uniquely determined by the Dirichlet-to-Neumann map measured at a single boundary point, or integrated against a fixed measure. This result is valid even when the Dirichlet data is only given on a small subset of the boundary. We also give related uniqueness results on Riemannian manifolds.References
- Yernat M. Assylbekov and Ting Zhou, Direct and inverse problems for the nonlinear time-harmonic Maxwell equations in Kerr-type media, J. Spectr. Theory 11 (2021), no. 1, 1–38. MR 4233204, DOI 10.4171/jst/334
- Amin Boumenir and Vu Kim Tuan, Reconstructing the wave speed and the source, Math. Methods Appl. Sci. 44 (2021), no. 18, 14470–14480. MR 4342848, DOI 10.1002/mma.7713
- Cătălin I. Cârstea and Ali Feizmohammadi, An inverse boundary value problem for certain anisotropic quasilinear elliptic equations, J. Differential Equations 284 (2021), 318–349. MR 4227095, DOI 10.1016/j.jde.2021.02.044
- Cătălin I. Cârstea, Ali Feizmohammadi, Yavar Kian, Katya Krupchyk, and Gunther Uhlmann, The Calderón inverse problem for isotropic quasilinear conductivities, Adv. Math. 391 (2021), Paper No. 107956, 31. MR 4300916, DOI 10.1016/j.aim.2021.107956
- Cătălin I. Cârstea, Tuhin Ghosh, and Gunther Uhlmann, An inverse problem for the porous medium equation with partial data and a possibly singular absorption term, arXiv:2108.12970 (2021).
- Cătălin I. Cârstea, Gen Nakamura, and Manmohan Vashisth, Reconstruction for the coefficients of a quasilinear elliptic partial differential equation, Appl. Math. Lett. 98 (2019), 121–127. MR 3964222, DOI 10.1016/j.aml.2019.06.009
- David Dos Santos Ferreira, Carlos E. Kenig, Johannes Sjöstrand, and Gunther Uhlmann, On the linearized local Calderón problem, Math. Res. Lett. 16 (2009), no. 6, 955–970. MR 2576684, DOI 10.4310/MRL.2009.v16.n6.a4
- Ali Feizmohammadi and Lauri Oksanen, An inverse problem for a semi-linear elliptic equation in Riemannian geometries, J. Differential Equations 269 (2020), no. 6, 4683–4719. MR 4104456, DOI 10.1016/j.jde.2020.03.037
- Colin Guillarmou, Mikko Salo, and Leo Tzou, The linearized Calderón problem on complex manifolds, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 6, 1043–1056. MR 3952702, DOI 10.1007/s10114-019-8129-7
- Fengbo Hang, Xiaodong Wang, and Xiaodong Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 1, 1–21. MR 2483810, DOI 10.1016/j.anihpc.2007.03.006
- Victor Isakov and Adrian I. Nachman, Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347 (1995), no. 9, 3375–3390. MR 1311909, DOI 10.1090/S0002-9947-1995-1311909-1
- Victor Isakov and John Sylvester, Global uniqueness for a semilinear elliptic inverse problem, Comm. Pure Appl. Math. 47 (1994), no. 10, 1403–1410. MR 1295934, DOI 10.1002/cpa.3160471005
- V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal. 124 (1993), no. 1, 1–12. MR 1233645, DOI 10.1007/BF00392201
- Yavar Kian, Katya Krupchyk, and Gunther Uhlmann, Partial data inverse problems for quasilinear conductivity equations, Math. Ann. (2022), https://doi.org/10.1007/s00208-022-02367-y.
- Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann, Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Invent. Math. 212 (2018), no. 3, 781–857. MR 3802298, DOI 10.1007/s00222-017-0780-y
- Kyeonbae Kang and Gen Nakamura, Identification of nonlinearity in a conductivity equation via the Dirichlet-to-Neumann map, Inverse Problems 18 (2002), no. 4, 1079–1088. MR 1929283, DOI 10.1088/0266-5611/18/4/309
- Steven G. Krantz, Calculation and estimation of the Poisson kernel, J. Math. Anal. Appl. 302 (2005), no. 1, 143–148. MR 2107352, DOI 10.1016/j.jmaa.2004.08.010
- Katya Krupchyk and Gunther Uhlmann, Partial data inverse problems for semilinear elliptic equations with gradient nonlinearities, Math. Res. Lett. 27 (2020), no. 6, 1801–1824. MR 4216606, DOI 10.4310/MRL.2020.v27.n6.a10
- Katya Krupchyk and Gunther Uhlmann, A remark on partial data inverse problems for semilinear elliptic equations, Proc. Amer. Math. Soc. 148 (2020), no. 2, 681–685. MR 4052205, DOI 10.1090/proc/14844
- Katya Krupchyk and Gunther Uhlmann, Inverse problems for nonlinear magnetic Schrödinger equations on conformally transversally anisotropic manifolds, Anal. PDE (2022), arXiv:2009.05089.
- Nicolas Lerner, Carleman inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 353, Springer, Cham, 2019. An introduction and more. MR 3932103, DOI 10.1007/978-3-030-15993-1
- Matti Lassas, Tony Liimatainen, Yi-Hsuan Lin, and Mikko Salo, Inverse problems for elliptic equations with power type nonlinearities, J. Math. Pures Appl. (9) 145 (2021), 44–82 (English, with English and French summaries). MR 4188325, DOI 10.1016/j.matpur.2020.11.006
- Matti Lassas, Tony Liimatainen, Yi-Hsuan Lin, and Mikko Salo, Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations, Rev. Mat. Iberoam. 37 (2021), no. 4, 1553–1580. MR 4269409, DOI 10.4171/rmi/1242
- Matti Lassas, Tony Liimatainen, Leyter Potenciano-Machado, and Teemu Tyni, Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation, J. Differential Equations 337 (2022), 395–435. MR 4473034, DOI 10.1016/j.jde.2022.08.010
- Tony Liimatainen, Yi-Hsuan Lin, Mikko Salo, and Teemu Tyni, Inverse problems for elliptic equations with fractional power type nonlinearities, J. Differential Equations 306 (2022), 189–219. MR 4332042, DOI 10.1016/j.jde.2021.10.015
- Ru-Yu Lai and Ting Zhou, Partial data inverse problems for nonlinear magnetic Schrödinger equations, arXiv:2007.02475 (2020).
- Ziqi Sun and Gunther Uhlmann, Inverse problems in quasilinear anisotropic media, Amer. J. Math. 119 (1997), no. 4, 771–797. MR 1465069, DOI 10.1353/ajm.1997.0027
- Ziqi Sun, On a quasilinear inverse boundary value problem, Math. Z. 221 (1996), no. 2, 293–305. MR 1376299, DOI 10.1007/BF02622117
- Leo Tzou, Determining Riemannian manifolds from nonlinear wave observations at a single point, arXiv:2102.01841 (2021).
Bibliographic Information
- Mikko Salo
- Affiliation: Department of Mathematics and Statistics, University of Jyvaskyla, Jyvaskyla, Finland
- MR Author ID: 749335
- ORCID: 0000-0002-3681-6779
- Email: mikko.j.salo@jyu.fi
- Leo Tzou
- Affiliation: Korteweg-de Vries Institute, University of Amsterdam, Amsterdam, Netherlands
- MR Author ID: 746423
- Email: leo.tzou@gmail.com
- Received by editor(s): March 15, 2022
- Received by editor(s) in revised form: August 26, 2022
- Published electronically: February 10, 2023
- Additional Notes: The first author was partly supported by the Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant 284715) and by the European Research Council under Horizon 2020 (ERC CoG 770924). The second author was partly supported by Australian Research Council Discovery Projects DP190103451 and DP190103302.
- Communicated by: Ryan Hynd
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2023-2030
- MSC (2020): Primary 35R30
- DOI: https://doi.org/10.1090/proc/16255
- MathSciNet review: 4556197