Countably compact groups having minimal infinite powers
HTML articles powered by AMS MathViewer
- by Dikran Dikranjan and Vladimir Uspenskij
- Proc. Amer. Math. Soc. 151 (2023), 2261-2276
- DOI: https://doi.org/10.1090/proc/16276
- Published electronically: February 28, 2023
- HTML | PDF | Request permission
Abstract:
We answer the question, raised more than thirty years ago by Dikranjan and Shakhmatov [Comp. Rend. Acad. Sci. Bulg., 41 (1990), pp. 13-15] and Dikranjan and Shakhmatov [Trans. Amer. Math. Soc. 335 (1993), pp. 775-790], on whether the power $G^\omega$ of a countably compact minimal Abelian group $G$ is minimal, by showing that the negative answer is equivalent to the existence of measurable cardinals. The proof is carried out in the larger class of sequentially complete groups. We characterize the sequentially complete minimal Abelian groups $G$ such that $G^\omega$ is minimal – these are exactly those $G$ that contain the connected component of their completion. This naturally leads to the next step, namely, a better understanding of the structure of the sequentially complete minimal Abelian groups, and in particular, their connected components which turns out to depend on the existence of Ulam measurable cardinals. More specifically, all connected sequentially complete minimal Abelian groups are compact if Ulam measurable cardinals do not exist. On the other hand, for every Ulam measurable cardinal $\sigma$ we build a non-compact torsion-free connected minimal $\omega$-bounded Abelian group of weight $\sigma$, thereby showing that the Ulam measurable cardinals are precisely the weights of non-compact sequentially complete connected minimal Abelian groups.References
- A. V. Arhangel’skij, On countably compact topologies on compact groups and dyadic compacta, Topology Appl. 57 (1994) 163–183.
- L. Außenhofer, D. Dikranjan, and A. Giordano Bruno, Topological groups and the Pontryagin-van Kampen duality. An introduction, De Gruyter Studies in Mathematics, vol. 83, Walter de Gruyter GmbH, Berlin/Boston, 2022.
- W. W. Comfort and Douglass L. Grant, Cardinal invariants, pseudocompactness and minimality: some recent advances in the topological theory of topological groups, Topology Proc. 6 (1981), no. 2, 227–265 (1982). MR 672457
- W. W. Comfort and Dieter Remus, Compact groups of Ulam-measurable cardinality: partial converses to theorems of Arhangel′skiĭ and Varopoulos, Math. Japon. 39 (1994), no. 2, 203–210. MR 1270627
- Dikran Dikranjan, Sur la minimalité des produits de groupes topologiques abéliens, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 8, 303–306 (French, with English summary). MR 761252
- Dikran Dikranjan, Zero-dimensionality of some pseudocompact groups, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1299–1308. MR 1185278, DOI 10.1090/S0002-9939-1994-1185278-9
- Dikran Dikranjan and Michael Megrelishvili, Minimality conditions in topological groups, Recent progress in general topology. III, Atlantis Press, Paris, 2014, pp. 229–327. MR 3205486, DOI 10.2991/978-94-6239-024-9_{6}
- Dikran N. Dikranjan, Ivan R. Prodanov, and Luchezar N. Stoyanov, Topological groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 130, Marcel Dekker, Inc., New York, 1990. Characters, dualities and minimal group topologies. MR 1015288
- D. N. Dikranjan and D. B. Shakhmatov, Products of minimal abelian groups, Math. Z. 204 (1990), no. 4, 583–603. MR 1062137, DOI 10.1007/BF02570894
- D. Dikranjan and D. Shakhmatov, Critical power of minimality of countably compact and pseudocompact groups, C. R. Acad. Bulgare Sci. 41, (1990), no. 10, 13–15.
- Dikran N. Dikranjan and Dmitrii B. Shakhmatov, Compact-like totally dense subgroups of compact groups, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1119–1129. MR 1081694, DOI 10.1090/S0002-9939-1992-1081694-2
- Dikran N. Dikranjan and Dmitrii B. Shakhmatov, Pseudocompact and countably compact abelian groups: Cartesian products and minimality, Trans. Amer. Math. Soc. 335 (1993), no. 2, 775–790. MR 1085937, DOI 10.1090/S0002-9947-1993-1085937-6
- Dikran Dikranjan and Luchesar Stojanov, $A$-classes of minimal abelian groups, Annuaire Univ. Sofia Fac. Math. Méc. 71 (1976/77), no. 2, 53–62 (1986) (English, with Bulgarian summary). MR 855504
- Dikran Dikranjan and Michael Tkačenko, Sequentially complete groups: dimension and minimality, J. Pure Appl. Algebra 157 (2001), no. 2-3, 215–239. MR 1812053, DOI 10.1016/S0022-4049(00)00015-3
- Dikran Dikranjan and Michael Tkačenko, Sequential completeness of quotient groups, Bull. Austral. Math. Soc. 61 (2000), no. 1, 129–150. MR 1819322, DOI 10.1017/S0004972700022085
- Dikran Dikranjan and Alberto Tonolo, On the minimality of powers of minimal $\omega$-bounded abelian groups, Proc. Amer. Math. Soc. 127 (1999), no. 10, 3101–3110. MR 1600132, DOI 10.1090/S0002-9939-99-04834-0
- Dikran N. Dikranjan and V. V. Uspenskij, Categorically compact topological groups, J. Pure Appl. Algebra 126 (1998), no. 1-3, 149–168. MR 1600526, DOI 10.1016/S0022-4049(96)00139-9
- Doïtchin Doïtchinov, Produits de groupes topologiques minimaux, Bull. Sci. Math. (2) 96 (1972), 59–64 (French). MR 308323
- V. Eberhardt, S. Dierolf, and U. Schwanengel, On the product of two (totally) minimal topological groups and the three-space-problem, Math. Ann. 251 (1980), no. 2, 123–128. MR 585958, DOI 10.1007/BF01536179
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics, Vol. 36-II, Academic Press, New York-London, 1973. MR 349869
- Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
- Michael Megrelishvili, Group representations and construction of minimal topological groups, Topology Appl. 62 (1995), no. 1, 1–19. MR 1318425, DOI 10.1016/0166-8641(94)00043-3
- Ivan Prodanov, Precompact minimal group topologies and $p$-adic numbers, Annuaire Univ. Sofia Fac. Math. 66 (1971/72), 249–266 (1974) (English, with Russian summary). MR 412323
- I. R. Prodanov and L. N. Stojanov, Every minimal abelian group is precompact, C. R. Acad. Bulgare Sci. 37 (1984), no. 1, 23–26. MR 748738
- Dieter Remus and Luchezar Stojanov, Complete minimal and totally minimal groups, Topology Appl. 42 (1991), no. 1, 57–69. MR 1135781, DOI 10.1016/0166-8641(91)90032-H
- R. M. Stephenson Jr., Minimal topological groups, Math. Ann. 192 (1971), 193–195. MR 286934, DOI 10.1007/BF02052870
- Luchesar Stojanov, Weak periodicity and minimality of topological groups, Annuaire Univ. Sofia Fac. Math. Méc. 73 (1979), 155–167 (1986) (English, with Bulgarian summary). MR 893716
- L. Stoyanov, On products of minimal and totally minimal groups, Proc. 11th Conf. of the Union of Bulg. Math., Sunny Beach, 1982, pp. 287–294.
- Alberto Tonolo, On the existence of a finest equivalent linear topology, Comm. Algebra 20 (1992), no. 2, 437–455. MR 1146307, DOI 10.1080/00927879208824349
- Vladimir V. Uspenskij, On subgroups of minimal topological groups, Topology Appl. 155 (2008), no. 14, 1580–1606. MR 2435151, DOI 10.1016/j.topol.2008.03.001
- V. V. Uspenskij, Real-valued measurable cardinals and sequentially continuous homomorphisms, Topology Appl. (to appear).
Bibliographic Information
- Dikran Dikranjan
- Affiliation: Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Italy
- MR Author ID: 58050
- ORCID: 0000-0002-1159-9958
- Email: dikran.dikranjan@uniud.it
- Vladimir Uspenskij
- Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701
- MR Author ID: 191555
- Email: uspenski@ohio.edu
- Received by editor(s): December 15, 2021
- Received by editor(s) in revised form: September 14, 2022
- Published electronically: February 28, 2023
- Communicated by: Vera Fischer
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2261-2276
- MSC (2020): Primary 22A05; Secondary 54H11, 22B05, 54A35, 54B30, 54D25, 54D30, 54H13
- DOI: https://doi.org/10.1090/proc/16276
- MathSciNet review: 4556216