Gradient estimates for Schrödinger operators with characterizations of $BMO_{\mathcal {L}}$ on Heisenberg groups
HTML articles powered by AMS MathViewer
- by Qingze Lin;
- Proc. Amer. Math. Soc. 151 (2023), 2127-2142
- DOI: https://doi.org/10.1090/proc/16308
- Published electronically: February 10, 2023
- HTML | PDF | Request permission
Abstract:
Let $\mathcal {L}=-\Delta _{\mathbb {H}^n}+V$ be a Schrödinger operator with the nonnegative potential $V$ belonging to the reverse Hölder class $B_{Q}$, where $Q$ is the homogeneous dimension of the Heisenberg group $\mathbb {H}^n$. In this paper, we obtain pointwise bounds for the spatial derivatives of the heat and Poisson kernels related to $\mathcal {L}$. As an application, we characterize the space $BMO_{\mathcal {L}}(\mathbb {H}^n)$, associated to the Schrödinger operator $\mathcal {L}$, in terms of two Carleson type measures involving the spatial derivatives of the heat kernel of the semigroup $\{e^{-s\mathcal {L}}\}_{s>0}$ and the Poisson kernel of the semigroup $\{e^{-s\sqrt {\mathcal {L}}}\}_{s>0}$, respectively. At last, we pose a conjecture about the converse characterization of $BMO_{\mathcal {L}}(\mathbb {H}^n)$.References
- Anders Björn and Jana Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical Society (EMS), Zürich, 2011. MR 2867756, DOI 10.4171/099
- A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2363343
- Huai Dong Cao and Shing-Tung Yau, Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields, Math. Z. 211 (1992), no. 3, 485–504. MR 1190224, DOI 10.1007/BF02571441
- Thierry Coulhon, Renjin Jiang, Pekka Koskela, and Adam Sikora, Gradient estimates for heat kernels and harmonic functions, J. Funct. Anal. 278 (2020), no. 8, 108398, 67. MR 4056992, DOI 10.1016/j.jfa.2019.108398
- Giuseppe Di Fazio, Cristian E. Gutiérrez, and Ermanno Lanconelli, Covering theorems, inequalities on metric spaces and applications to PDE’s, Math. Ann. 341 (2008), no. 2, 255–291. MR 2385658, DOI 10.1007/s00208-007-0188-x
- J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, $BMO$ spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), no. 2, 329–356. MR 2115447, DOI 10.1007/s00209-004-0701-9
- Xuan Thinh Duong, Lixin Yan, and Chao Zhang, On characterization of Poisson integrals of Schrödinger operators with BMO traces, J. Funct. Anal. 266 (2014), no. 4, 2053–2085. MR 3150151, DOI 10.1016/j.jfa.2013.09.008
- Nathaniel Eldredge, Gradient estimates for the subelliptic heat kernel on $H$-type groups, J. Funct. Anal. 258 (2010), no. 2, 504–533. MR 2557945, DOI 10.1016/j.jfa.2009.08.012
- E. B. Fabes, R. L. Johnson, and U. Neri, Spaces of harmonic functions representable by Poisson integrals of functions in $\textrm {BMO}$ and ${\cal L}_{p,\lambda }$, Indiana Univ. Math. J. 25 (1976), no. 2, 159–170. MR 394172, DOI 10.1512/iumj.1976.25.25012
- Eugene B. Fabes and Umberto Neri, Characterization of temperatures with initial data in BMO, Duke Math. J. 42 (1975), no. 4, 725–734. MR 397163
- Eugene B. Fabes and Umberto Neri, Dirichlet problem in Lipschitz domains with BMO data, Proc. Amer. Math. Soc. 78 (1980), no. 1, 33–39. MR 548079, DOI 10.1090/S0002-9939-1980-0548079-8
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Jun-Qi Hu and Hong-Quan Li, Gradient estimates for the heat semigroup on H-type groups, Potential Anal. 33 (2010), no. 4, 355–386. MR 2726903, DOI 10.1007/s11118-010-9173-1
- A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), no. 2, 165–173. MR 418257, DOI 10.4064/sm-56-2-165-173
- David S. Jerison and Antonio Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), no. 4, 835–854. MR 865430, DOI 10.1512/iumj.1986.35.35043
- Renjin Jiang and Bo Li, Dirichlet problem for Schrödinger equation with the boundary value in the BMO space, Sci. China Math. 65 (2022), no. 7, 1431–1468. MR 4444237, DOI 10.1007/s11425-020-1834-1
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- Steven G. Krantz, Harmonic and complex analysis in several variables, Springer Monographs in Mathematics, Springer, Cham, 2017. MR 3645453, DOI 10.1007/978-3-319-63231-5
- Hong-Quan Li, Estimations $L^p$ des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal. 161 (1999), no. 1, 152–218 (French, with French summary). MR 1670222, DOI 10.1006/jfan.1998.3347
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Chin-Cheng Lin and Heping Liu, $\textrm {BMO}_L(\Bbb H^n)$ spaces and Carleson measures for Schrödinger operators, Adv. Math. 228 (2011), no. 3, 1631–1688. MR 2824565, DOI 10.1016/j.aim.2011.06.024
- Guozhen Lu, A Fefferman-Phong type inequality for degenerate vector fields and applications, PanAmer. Math. J. 6 (1996), no. 4, 37–57. MR 1414658
- Zhong Wei Shen, On the Neumann problem for Schrödinger operators in Lipschitz domains, Indiana Univ. Math. J. 43 (1994), no. 1, 143–176. MR 1275456, DOI 10.1512/iumj.1994.43.43007
- Zhong Wei Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513–546 (English, with English and French summaries). MR 1343560, DOI 10.5802/aif.1463
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970. MR 252961
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Sundaram Thangavelu, Harmonic analysis on the Heisenberg group, Progress in Mathematics, vol. 159, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1633042, DOI 10.1007/978-1-4612-1772-5
- Jie Xiao, The $\scr Q_p$ Carleson measure problem, Adv. Math. 217 (2008), no. 5, 2075–2088. MR 2388086, DOI 10.1016/j.aim.2007.08.015
Bibliographic Information
- Qingze Lin
- Affiliation: School of Mathematics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
- ORCID: 0000-0001-9760-9223
- Email: linqz@mail2.sysu.edu.cn
- Received by editor(s): May 27, 2022
- Received by editor(s) in revised form: September 4, 2022, September 18, 2022, and September 19, 2022
- Published electronically: February 10, 2023
- Additional Notes: The author was supported by the NNSF of China (No. 12071490).
- Communicated by: Benoit Pausader
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2127-2142
- MSC (2020): Primary 35J10, 35K08, 43A80
- DOI: https://doi.org/10.1090/proc/16308
- MathSciNet review: 4556206