Solution to a conjecture of Schmidt and Tuller on one-dimensional packings and coverings
HTML articles powered by AMS MathViewer
- by Nóra Frankl, Andrey Kupavskii and Arsenii Sagdeev;
- Proc. Amer. Math. Soc. 151 (2023), 2353-2362
- DOI: https://doi.org/10.1090/proc/16254
- Published electronically: March 14, 2023
- HTML | PDF | Request permission
Abstract:
In 2008, Schmidt and Tuller stated a conjecture concerning optimal packing and covering of integers by translates of a given three-point set. In this note, we confirm their conjecture and relate it to several other problems in combinatorics.References
- Maria Axenovich, John Goldwasser, Bernard Lidický, Ryan R. Martin, David Offner, John Talbot, and Michael Young, Polychromatic colorings on the integers, Integers 19 (2019), Paper No. A18, 17. MR 3928556
- Siddhartha Bhattacharya, Periodicity and decidability of tilings of $\Bbb Z^2$, Amer. J. Math. 142 (2020), no. 1, 255–266. MR 4060876, DOI 10.1353/ajm.2020.0006
- Béla Bollobás, Svante Janson, and Oliver Riordan, On covering by translates of a set, Random Structures Algorithms 38 (2011), no. 1-2, 33–67. MR 2768883, DOI 10.1002/rsa.20346
- Peter Brass, William Moser, and János Pach, Research problems in discrete geometry, Springer, New York, 2005. MR 2163782
- Ethan M. Coven and Aaron Meyerowitz, Tiling the integers with translates of one finite set, J. Algebra 212 (1999), no. 1, 161–174. MR 1670646, DOI 10.1006/jabr.1998.7628
- Paul Erdős, Some results on additive number theory, Proc. Amer. Math. Soc. 5 (1954), 847–853. MR 64798, DOI 10.1090/S0002-9939-1954-0064798-9
- N. Frankl, A. Kupavskii, and A. Sagdeev, Max-norm Ramsey Theory, arXiv:2111.08949, 2022.
- Marcel J. E. Golay, Notes on the representation of $1,\,2,\,\ldots ,\,n$ by differences, J. London Math. Soc. (2) 4 (1972), 729–734. MR 297732, DOI 10.1112/jlms/s2-4.4.729
- Andrey Kupavskii and Arsenii Sagdeev, All finite sets are Ramsey in the maximum norm, Forum Math. Sigma 9 (2021), Paper No. e55, 12. MR 4298642, DOI 10.1017/fms.2021.50
- A. B. Kupavskii and A. A. Sagdeev, Ramsey theory in the $n$-space with Chebyshev metric, Uspekhi Mat. Nauk 75 (2020), no. 5(455), 191–192 (Russian); English transl., Russian Math. Surveys 75 (2020), no. 5, 965–967. MR 4154851, DOI 10.4213/rm9958
- Daphne Der-Fen Liu and Xuding Zhu, Fractional chromatic number and circular chromatic number for distance graphs with large clique size, J. Graph Theory 47 (2004), no. 2, 129–146. MR 2082743, DOI 10.1002/jgt.20020
- G. G. Lorentz, On a problem of additive number theory, Proc. Amer. Math. Soc. 5 (1954), 838–841. MR 63389, DOI 10.1090/S0002-9939-1954-0063389-3
- D. J. Newman, Complements of finite sets of integers, Michigan Math. J. 14 (1967), 481–486. MR 218324, DOI 10.1307/mmj/1028999851
- Donald J. Newman, Tesselation of integers, J. Number Theory 9 (1977), no. 1, 107–111. MR 429720, DOI 10.1016/0022-314X(77)90054-3
- Joshua H. Rabinowitz and Viera Krňanová Proulx, An asymptotic approach to the channel assignment problem, SIAM J. Algebraic Discrete Methods 6 (1985), no. 3, 507–518. MR 791178, DOI 10.1137/0606050
- Wolfgang M. Schmidt and David M. Tuller, Covering and packing in $\Bbb Z^n$ and $\Bbb R^n$. I, Monatsh. Math. 153 (2008), no. 3, 265–281. MR 2379671, DOI 10.1007/s00605-007-0500-6
- Wolfgang M. Schmidt and David M. Tuller, Covering and packing in $\Bbb Z^n$ and $\Bbb R^n$. II, Monatsh. Math. 160 (2010), no. 2, 195–210. MR 2644221, DOI 10.1007/s00605-009-0099-x
- Sherman Stein, Tiling, packing, and covering by clusters, Rocky Mountain J. Math. 16 (1986), no. 2, 277–321. MR 843054, DOI 10.1216/RMJ-1986-16-2-277
- G. Weinstein, Some covering and packing results in number theory, J. Number Theory 8 (1976), no. 2, 193–205. MR 435022, DOI 10.1016/0022-314X(76)90101-3
Bibliographic Information
- Nóra Frankl
- Affiliation: School of Mathematics and Statistics, The Open University, Milton Keynes, United Kingdom; and Alfréd Rényi Institute of Mathematics, Budapest, Hungary
- Email: nfrankl@ou.ac.uk
- Andrey Kupavskii
- Affiliation: MIPT, Moscow, Russia; and G-SCOP, Université Grenoble-Alpes, CNRS, France
- MR Author ID: 881077
- Email: kupavskii@ya.ru
- Arsenii Sagdeev
- Affiliation: MIPT, Moscow, Russia; and Alfréd Rényi Institute of Mathematics, Budapest, Hungary
- MR Author ID: 1211056
- ORCID: 0000-0001-8699-2204
- Email: sagdeevarsenii@gmail.com
- Received by editor(s): March 11, 2022
- Received by editor(s) in revised form: July 28, 2022
- Published electronically: March 14, 2023
- Additional Notes: The research was supported by the RSF grant N 21-71-10092
Supported in part by ERC Advanced Grant ‘GeoScape’. - Communicated by: Isabella Novik
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2353-2362
- MSC (2020): Primary 05B40
- DOI: https://doi.org/10.1090/proc/16254
- MathSciNet review: 4576303