Metric density results for the value distribution of Sudler products
HTML articles powered by AMS MathViewer
- by Manuel Hauke;
- Proc. Amer. Math. Soc. 151 (2023), 2339-2351
- DOI: https://doi.org/10.1090/proc/16269
- Published electronically: March 3, 2023
- HTML | PDF | Request permission
Abstract:
We study the value distribution of the Sudler product $P_N(\alpha ) ≔\prod _{n=1}^{N}\lvert 2\sin (\pi n \alpha )\rvert$ for Lebesgue-almost every irrational $\alpha$. We show that for every non-decreasing function $\psi : (0,\infty ) \to (0,\infty )$ with $\sum _{k=1}^{\infty } \frac {1}{\psi (k)} = \infty$, the set $\{N \in \mathbb {N}: \log P_N(\alpha ) \leq -\psi (\log N)\}$ has upper density $1$, which answers a question of Bence Borda. On the other hand, we prove that $\{N \in \mathbb {N}: \log P_N(\alpha ) \geq \psi (\log N)\}$ has upper density at least $\frac {1}{2}$, with remarkable equality if $\liminf _{k \to \infty } \psi (k)/(k \log k) \geq C$ for some sufficiently large $C > 0$.References
- Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, Cambridge, 2003. Theory, applications, generalizations. MR 1997038, DOI 10.1017/CBO9780511546563
- C. Aistleitner and B. Borda, Maximizing Sudler products via Ostrowski expansions and cotangent sums, arXiv:2104.01379, 2021.
- C. Aistleitner and B. Borda, Quantum invariants of hyperbolic knots and extreme values of trigonometric products, Algebra Number Theory (to appear), arXiv:2006.08578, 2020.
- C. Aistleitner, N. Technau, and A. Zafeiropoulos, On the order of magnitude of Sudler products, Amer. J. Math., To appear, arXiv:2002.06602, 2020.
- Artur Avila and Svetlana Jitomirskaya, The Ten Martini Problem, Ann. of Math. (2) 170 (2009), no. 1, 303–342. MR 2521117, DOI 10.4007/annals.2009.170.303
- Felix Bernstein, Über eine Anwendung der Mengenlehre auf ein aus der Theorie der säkularen Störungen herrührendes Problem, Math. Ann. 71 (1911), no. 3, 417–439 (German). MR 1511668, DOI 10.1007/BF01456856
- S. Bettin and S. Drappeau, Modularity and value distribution of quantum invariants of hyperbolic knots, Math. Ann. 382 (2022), no. 3-4, 1631–1679. MR 4403231, DOI 10.1007/s00208-021-02288-2
- B. Borda, On the distribution of Sudler products and Birkhoff sums for the irrational rotation, arXiv:2104.06716, 2021.
- Harold G. Diamond and Jeffrey D. Vaaler, Estimates for partial sums of continued fraction partial quotients, Pacific J. Math. 122 (1986), no. 1, 73–82. MR 825224, DOI 10.2140/pjm.1986.122.73
- Dmitry Dolgopyat and Bassam Fayad, Limit theorems for toral translations, Hyperbolic dynamics, fluctuations and large deviations, Proc. Sympos. Pure Math., vol. 89, Amer. Math. Soc., Providence, RI, 2015, pp. 227–277. MR 3309100, DOI 10.1090/pspum/089/01492
- P. Erdős and G. Szekeres, On the product $\Pi ^n_{k=1}(1-z^ak)$, Acad. Serbe Sci. Publ. Inst. Math. 13 (1959), 29–34. MR 126425
- Sigrid Grepstad, Lisa Kaltenböck, and Mario Neumüller, A positive lower bound for $\liminf _{N\rightarrow \infty }\prod _{r=1}^N|2\sin \pi r \varphi |$, Proc. Amer. Math. Soc. 147 (2019), no. 11, 4863–4876. MR 4011519, DOI 10.1090/proc/14611
- S. Grepstad, L. Kaltenböck, and M. Neumüller, On the asymptotic behaviour of the sine product $\prod _{r=1}^n|2\sin (\pi r \alpha )|$, in D. Bilyk, J. Dick, and F. Pillichshammer (Eds.), Discrepancy Theory (2020). Berlin, Germany: De Gruyter.
- S. Grepstad, M. Neumüller, and A. Zafeiropoulos, On the order of magnitude of Sudler products II, Int. J. Number Theory (2022), 1–42, DOI 10.1142/s1793042123500483.
- Manuel Hauke, On extreme values for the Sudler product of quadratic irrationals, Acta Arith. 204 (2022), no. 1, 41–82. MR 4450279, DOI 10.4064/aa211129-23-3
- Oliver Knill and Folkert Tangerman, Self-similarity and growth in Birkhoff sums for the golden rotation, Nonlinearity 24 (2011), no. 11, 3115–3127. MR 2844830, DOI 10.1088/0951-7715/24/11/006
- D. S. Lubinsky, Rogers-Ramanujan and the Baker-Gammel-Wills (Padé) conjecture, Ann. of Math. (2) 157 (2003), no. 3, 847–889. MR 1983783, DOI 10.4007/annals.2003.157.847
- D. S. Lubinsky, The size of $(q;q)_n$ for $q$ on the unit circle, J. Number Theory 76 (1999), no. 2, 217–247. MR 1684685, DOI 10.1006/jnth.1998.2365
- D. S. Lubinsky and E. B. Saff, Convergence of Padé approximants of partial theta functions and the Rogers-Szegő polynomials, Constr. Approx. 3 (1987), no. 4, 331–361. MR 904340, DOI 10.1007/BF01890574
- Andrew M. Rockett and Peter Szüsz, Continued fractions, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. MR 1188878, DOI 10.1142/1725
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
- C. Sudler Jr., An estimate for a restricted partition function, Quart. J. Math. Oxford Ser. (2) 15 (1964), 1–10. MR 163890, DOI 10.1093/qmath/15.1.1
- Don Zagier, Quantum modular forms, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 659–675. MR 2757599
Bibliographic Information
- Manuel Hauke
- Affiliation: Graz University of Technology, Institute of Analysis and Number Theory, Steyrergasse 30/II, 8010 Graz, Austria
- MR Author ID: 1514396
- ORCID: 0000-0002-6244-0285
- Email: hauke@math.tugraz.at
- Received by editor(s): March 9, 2022
- Received by editor(s) in revised form: July 13, 2022
- Published electronically: March 3, 2023
- Communicated by: Amanda Folsom
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2339-2351
- MSC (2020): Primary 11J83; Secondary 11J70, 11K50, 11K60
- DOI: https://doi.org/10.1090/proc/16269
- MathSciNet review: 4576302