A polyanalytic functional calculus of order 2 on the $S$-spectrum
HTML articles powered by AMS MathViewer
- by Antonino de Martino and Stefano Pinton;
- Proc. Amer. Math. Soc. 151 (2023), 2471-2488
- DOI: https://doi.org/10.1090/proc/16285
- Published electronically: March 14, 2023
- HTML | PDF | Request permission
Abstract:
The Fueter theorem provides a two step procedure to build an axially monogenic function, i.e. a null-solution of the Cauchy-Riemann operator in $\mathbb {R}^4$, denoted by $\mathcal {D}$. In the first step a holomorphic function is extended to a slice hyperholomorphic function, by means of the so-called slice operator. In the second step a monogenic function is built by applying the Laplace operator $\Delta$ in four real variables to the slice hyperholomorphic function. In this paper we use the factorization of the Laplace operator, i.e. $\Delta = \mathcal {\overline {D}} \mathcal {D}$ to split the previous procedure. From this splitting we get a class of functions that lies between the set of slice hyperholomorphic functions and the set of axially monogenic functions: the set of axially polyanalytic functions of order 2, i.e. null-solutions of $\mathcal {D}^2$. We show an integral representation formula for this kind of functions. The formula obtained is fundamental to define the associated functional calculus on the $S$-spectrum.References
- Luis Daniel Abreu, Super-wavelets versus poly-Bergman spaces, Integral Equations Operator Theory 73 (2012), no. 2, 177â193. MR 2921064, DOI 10.1007/s00020-012-1956-x
- LuĂs Daniel Abreu, Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions, Appl. Comput. Harmon. Anal. 29 (2010), no. 3, 287â302. MR 2672228, DOI 10.1016/j.acha.2009.11.004
- Luis Daniel Abreu and Hans G. Feichtinger, Function spaces of polyanalytic functions, Harmonic and complex analysis and its applications, Trends Math., BirkhĂ€user/Springer, Cham, 2014, pp. 1â38. MR 3203099, DOI 10.1007/978-3-319-01806-5_{1}
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009), 385â403. MR 2520116, DOI 10.1007/s11856-009-0055-4
- Daniel Alpay, Kamal Diki, and Irene Sabadini, On the global operator and Fueter mapping theorem for slice polyanalytic functions, Anal. Appl. (Singap.) 19 (2021), no. 6, 941â964. MR 4328762, DOI 10.1142/S0219530520500189
- Mark Benevich Balk, Polyanalytic functions, Mathematical Research, vol. 63, Akademie-Verlag, Berlin, 1991. MR 1184141
- H. Begehr, Iterated integral operators in Clifford analysis, Z. Anal. Anwendungen 18 (1999), no. 2, 361â377. MR 1701359, DOI 10.4171/ZAA/887
- F. Brackx, On $(k)$-monogenic functions of a quaternion variable, Function theoretic methods in differential equations, Res. Notes in Math., No. 8, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1976, pp. 22â44. MR 492321
- Isabel Cação, Maria Irene FalcĂŁo, and Helmuth Malonek, Hypercomplex polynomials, Vietorisâ rational numbers and a related integer numbers sequence, Complex Anal. Oper. Theory 11 (2017), no. 5, 1059â1076. MR 3656053, DOI 10.1007/s11785-017-0649-5
- Fabrizio Colombo, Antonino De Martino, and Irene Sabadini, The $\cal {F}$-resolvent equation and Riesz projectors for the $\cal {F}$-functional calculus, Complex Anal. Oper. Theory 17 (2023), no. 2, Paper No. 26, 42. MR 4537523, DOI 10.1007/s11785-022-01323-7
- Fabrizio Colombo, Antonino De Martino, Stefano Pinton, and Irene Sabadini, Axially harmonic functions and the harmonic functional calculus on the $S$-spectrum, J. Geom. Anal. 33 (2023), no. 1, Paper No. 2, 54. MR 4502763, DOI 10.1007/s12220-022-01062-3
- F. Colombo, A. De Martino, S. Pinton, and I. Sabadini, The fine structure of the spectral theory on the $S$-spectrum in dimension five, Preprint, arXiv:2303.00253, 2023, Submitted.
- Fabrizio Colombo and Jonathan Gantner, Formulations of the $\mathcal {F}$-functional calculus and some consequences, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 3, 509â545. MR 3507284, DOI 10.1017/S0308210515000645
- Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey, Spectral theory on the S-spectrum for quaternionic operators, Operator Theory: Advances and Applications, vol. 270, BirkhÀuser/Springer, Cham, 2018. MR 3887616, DOI 10.1007/978-3-030-03074-2
- Fabrizio Colombo, David P. Kimsey, Stefano Pinton, and Irene Sabadini, Slice monogenic functions of a Clifford variable via the $S$-functional calculus, Proc. Amer. Math. Soc. Ser. B 8 (2021), 281â296. MR 4321697, DOI 10.1090/bproc/94
- Fabrizio Colombo and Irene Sabadini, The $\scr F$-spectrum and the $\scr {SC}$-functional calculus, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 3, 479â500. MR 2945969, DOI 10.1017/S0308210510000338
- Fabrizio Colombo, Irene Sabadini, and Frank Sommen, The Fueter mapping theorem in integral form and the $\scr F$-functional calculus, Math. Methods Appl. Sci. 33 (2010), no. 17, 2050â2066. MR 2762317, DOI 10.1002/mma.1315
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Noncommutative functional calculus, Progress in Mathematics, vol. 289, BirkhÀuser/Springer Basel AG, Basel, 2011. Theory and applications of slice hyperholomorphic functions. MR 2752913, DOI 10.1007/978-3-0348-0110-2
- Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Michele Sceâs works in hypercomplex analysisâa translation with commentaries, BirkhĂ€user/Springer, Cham, [2020] ©2020. MR 4240465, DOI 10.1007/978-3-030-50216-4
- A. K. Common and F. Sommen, Axial monogenic functions from holomorphic functions, J. Math. Anal. Appl. 179 (1993), no. 2, 610â629. MR 1249841, DOI 10.1006/jmaa.1993.1372
- Antonino De Martino and Kamal Diki, On the polyanalytic short-time Fourier transform in the quaternionic setting, Commun. Pure Appl. Anal. 21 (2022), no. 11, 3629â3665. MR 4512986, DOI 10.3934/cpaa.2022117
- A. De Martino and K. Diki, Generalized Appell polynomials and Fueter-Bargmann transforms in the quaternionic setting, arXiv:2112.15116, 2021, Submitted.
- Kamal Diki, Rolf Sören Krausshar, and Irene Sabadini, On the Bargmann-Fock-Fueter and Bergman-Fueter integral transforms, J. Math. Phys. 60 (2019), no. 8, 083506, 26. MR 3994389, DOI 10.1063/1.5094384
- Run Fueter, Die Funktionentheorie der Differentialgleichungen $\Theta u=0$ und $\Theta \Theta u=0$ mit vier reellen Variablen, Comment. Math. Helv. 7 (1934), no. 1, 307â330 (German). MR 1509515, DOI 10.1007/BF01292723
- Brian Jefferies, Spectral properties of noncommuting operators, Lecture Notes in Mathematics, vol. 1843, Springer-Verlag, Berlin, 2004. MR 2069293, DOI 10.1007/b97327
- Brian Jefferies, Alan McIntosh, and James Picton-Warlow, The monogenic functional calculus, Studia Math. 136 (1999), no. 2, 99â119. MR 1716169
- G. V. Kolossov, Sur les problĂ©ms dâĂ©lasticitĂ© Ă deux dimensions, C. R. Acad. Sci., 146 (1908), 522â525.
- N. I. MusheliĆĄvili, Nekotorye osnovnye zadachi matematicheskoÄ teorii uprugosti. Osnovnye uravneniya, ploskaya teoriya uprugosti, kruchenie i izgib, Fifth revised and enlarged edition, Izdat. âNaukaâ, Moscow, 1966 (Russian). With a supplementary chapter by G. M. Barenblatt, A. I. Kalandija and G. F. MandĆŸavidze. MR 202367
- N. L. Vasilevski, On the structure of Bergman and poly-Bergman spaces, Integral Equations Operator Theory 33 (1999), no. 4, 471â488. MR 1682807, DOI 10.1007/BF01291838
Bibliographic Information
- Antonino de Martino
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9 20133 Milano, Italy
- MR Author ID: 1349646
- Email: antonino.demartino@polimi.it
- Stefano Pinton
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9 20133 Milano, Italy
- MR Author ID: 907802
- Email: stefano.pinton@polimi.it
- Received by editor(s): May 18, 2022
- Received by editor(s) in revised form: August 5, 2022
- Published electronically: March 14, 2023
- Communicated by: Javad Mashreghi
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2471-2488
- MSC (2020): Primary 30G35, 47A10, 47A60
- DOI: https://doi.org/10.1090/proc/16285
- MathSciNet review: 4576314