Cyclic multiplicity of a direct sum of forward and backward shifts
HTML articles powered by AMS MathViewer
- by Caixing Gu;
- Proc. Amer. Math. Soc. 151 (2023), 2587-2601
- DOI: https://doi.org/10.1090/proc/16301
- Published electronically: March 21, 2023
- HTML | PDF | Request permission
Abstract:
Let $E$ and $F$ be two complex Hilbert spaces. Let $S_{E}$ and $S_{F}$ be the shift operators on vector-valued Hardy space $H_{E}^{2}$ and $H_{F}^{2}$, respectively. We show that the cyclic multiplicity of $S_{E}\oplus S_{F} ^{\ast }$ equals $1+\dim E$. This result is classical when $\dim E=\dim F=1$ (see J. A. Deddens [On $A \oplus A^\ast$, 1972]; Paul Richard Halmos [A Hilbert space problem book, Springer-Verlag, New York-Berlin, 1982]; Domingo A. Herrero and Warren R. Wogen [Rocky Mountain J. Math. 20 (1990), pp. 445–466]). Our approach is inspired by the elegant and short proof of this classical result attributed to Nikolskii, Peller and Vasunin in Halmos’s book [A Hilbert space problem book, Springer-Verlag, New York-Berlin, 1982]. By using the invariant subspace theorems for $S_{E}\oplus S_{F}^{\ast }$ (see M. C. Câmara and W. T. Ross [Canad. Math. Bull. 64 (2021), pp. 98–111]; Caixing Gu and Shuaibing Luo [J. Funct. Anal. 282 (2022), 31 pp.]; Dan Timotin [Concr. Oper. 7 (2020), pp. 116–123]), we characterize non-cyclic subspaces of $S_{E}\oplus S_{F}^{\ast }$ when $\dim E<\infty$ and $\dim F=1$.References
- Arne Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239–255. MR 27954, DOI 10.1007/BF02395019
- A. A. Borichev and P. J. H. Hedenmalm, Cyclicity in Bergman-type spaces, Internat. Math. Res. Notices 5 (1995), 253–262. MR 1333752, DOI 10.1155/S1073792895000201
- M. C. Câmara and W. T. Ross, The dual of the compressed shift, Canad. Math. Bull. 64 (2021), no. 1, 98–111. MR 4242995, DOI 10.4153/S0008439520000260
- J. A. Deddens,On $A\oplus A^{\ast }$, Preprint, Not for publication, 1972.
- Xuanhao Ding and Yuanqi Sang, Dual truncated Toeplitz operators, J. Math. Anal. Appl. 461 (2018), no. 1, 929–946. MR 3759573, DOI 10.1016/j.jmaa.2017.12.032
- R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 1, 37–76 (English, with French summary). MR 270196, DOI 10.5802/aif.338
- Omar El-Fallah, Karim Kellay, and Thomas Ransford, On the Brown-Shields conjecture for cyclicity in the Dirichlet space, Adv. Math. 222 (2009), no. 6, 2196–2214. MR 2562781, DOI 10.1016/j.aim.2009.07.011
- Emmanuel Fricain, Javad Mashreghi, and Daniel Seco, Cyclicity in reproducing kernel Hilbert spaces of analytic functions, Comput. Methods Funct. Theory 14 (2014), no. 4, 665–680. MR 3274894, DOI 10.1007/s40315-014-0073-z
- Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross, Introduction to model spaces and their operators, Cambridge Studies in Advanced Mathematics, vol. 148, Cambridge University Press, Cambridge, 2016. MR 3526203, DOI 10.1017/CBO9781316258231
- Caixing Gu, Characterizations of dual truncated Toeplitz operators, J. Math. Anal. Appl. 496 (2021), no. 2, Paper No. 124815, 24. MR 4189020, DOI 10.1016/j.jmaa.2020.124815
- Caixing Gu, Dual truncated shift operators of high multiplicities on subspaces of vector-valued $L^{2}$ spaces, Preprint.
- Caixing Gu and Shuaibing Luo, Invariant subspaces of the direct sum of forward and backward shifts on vector-valued Hardy spaces, J. Funct. Anal. 282 (2022), no. 9, Paper No. 109419, 31. MR 4379908, DOI 10.1016/j.jfa.2022.109419
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 171178
- Henry Helson and David Lowdenslager, Invariant subspaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem, 1961, pp. 251–262. MR 157251
- Domingo A. Herrero, On multicyclic operators, Integral Equations Operator Theory 1 (1978), no. 1, 57–102. MR 490887, DOI 10.1007/BF01682740
- Domingo A. Herrero and Warren R. Wogen, On the multiplicity of $T\oplus T\oplus \cdots \oplus T$, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp. 445–466. MR 1065843, DOI 10.1216/rmjm/1181073120
- H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1973/74), 557–565. MR 326452, DOI 10.1512/iumj.1974.23.23046
- Peter D. Lax, Translation invariant spaces, Acta Math. 101 (1959), 163–178. MR 105620, DOI 10.1007/BF02559553
- Paul R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102–112. MR 152896, DOI 10.1515/crll.1961.208.102
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. Graduate Texts in Mathematics, 19. MR 675952, DOI 10.1007/978-1-4684-9330-6
- N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
- Dan Timotin, The invariant subspaces of $S\oplus S^*$, Concr. Oper. 7 (2020), no. 1, 116–123. MR 4129353, DOI 10.1515/conop-2020-0101
- Warren R. Wogen, On some operators with cyclic vectors, Indiana Univ. Math. J. 27 (1978), no. 1, 163–171. MR 467375, DOI 10.1512/iumj.1978.27.27014
Bibliographic Information
- Caixing Gu
- Affiliation: Department of Mathematics, California Polytechnic State University, San Luis Obispo, California 93407
- MR Author ID: 236909
- ORCID: 0000-0001-6289-7755
- Email: cgu@calpoly.edu
- Received by editor(s): March 8, 2022
- Received by editor(s) in revised form: October 9, 2022
- Published electronically: March 21, 2023
- Communicated by: Javad Mashreghi
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2587-2601
- MSC (2020): Primary 47A16, 47A15; Secondary 47B35, 47B37
- DOI: https://doi.org/10.1090/proc/16301
- MathSciNet review: 4576322