Differential-difference properties of hypergeometric series
HTML articles powered by AMS MathViewer
- by Nicolas Brisebarre and Bruno Salvy;
- Proc. Amer. Math. Soc. 151 (2023), 2603-2617
- DOI: https://doi.org/10.1090/proc/16316
- Published electronically: March 21, 2023
- HTML | PDF | Request permission
Abstract:
Six families of generalized hypergeometric series in a variable $x$ and an arbitrary number of parameters are considered. Each of them is indexed by an integer $n$. Linear recurrence relations in $n$ relate these functions and their product by the variable $x$. We give explicit factorizations of these equations as products of first order recurrence operators. Related recurrences are also derived for the derivative with respect to $x$. These formulas generalize well-known properties of the classical orthogonal polynomials.References
- Fred Brafman, Some generating functions for Laguerre and Hermite polynomials, Canadian J. Math. 9 (1957), 180–187. MR 85363, DOI 10.4153/CJM-1957-020-1
- Jerry L. Fields, Yudell L. Luke, and Jet Wimp, Recursion formulae for generalized hypergeometric functions, J. Approximation Theory 1 (1968), 137–166. MR 239130, DOI 10.1016/0021-9045(68)90018-x
- S. Lewanowicz, On the differential-difference properties of the extended Jacobi polynomials, Math. Comp. 44 (1985), no. 170, 435–441. MR 777275, DOI 10.1090/S0025-5718-1985-0777275-2
- Stanisław Lewanowicz, Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials, Appl. Math. (Warsaw) 29 (2002), no. 1, 97–116. MR 1907630, DOI 10.4064/am29-1-9
- Yudell L. Luke, Mathematical functions and their approximations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 501762
- P. Maroni, Prolégomènes à l’étude des polynômes orthogonaux semi-classiques, Ann. Mat. Pura Appl. (4) 149 (1987), 165–184 (French, with English summary). MR 932783, DOI 10.1007/BF01773932
- P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, Orthogonal polynomials and their applications (Erice, 1990) IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel, 1991, pp. 95–130 (French). MR 1270222
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- Oystein Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), no. 3, 480–508. MR 1503119, DOI 10.2307/1968173
- H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1984. MR 750112
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
- Jet Wimp, Differential-difference properties of hypergeometric polynomials, Math. Comp. 29 (1975), 577–581. MR 440085, DOI 10.1090/S0025-5718-1975-0440085-3
Bibliographic Information
- Nicolas Brisebarre
- Affiliation: Université de Lyon, CNRS, ENS de Lyon, Inria, Université Claude-Bernard Lyon 1, Laboratoire LIP (UMR 5668), Lyon, France
- MR Author ID: 649719
- ORCID: 0000-0002-4220-2132
- Email: Nicolas.Brisebarre@ens-lyon.fr
- Bruno Salvy
- Affiliation: Université de Lyon, CNRS, ENS de Lyon, Inria, Université Claude-Bernard Lyon 1, Laboratoire LIP (UMR 5668), Lyon, France
- MR Author ID: 273775
- ORCID: 0000-0002-4313-0679
- Email: Bruno.Salvy@inria.fr
- Received by editor(s): July 1, 2022
- Received by editor(s) in revised form: October 11, 2022
- Published electronically: March 21, 2023
- Additional Notes: This work was partly supported by the NuSCAP ANR-20-CE48-0014 project of the French Agence Nationale de la Recherche.
- Communicated by: Mourad Ismail
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2603-2617
- MSC (2020): Primary 33C20, 33C45
- DOI: https://doi.org/10.1090/proc/16316
- MathSciNet review: 4576323