CAT(0) cube complexes with flat hyperplanes
HTML articles powered by AMS MathViewer
- by Anthony Genevois;
- Proc. Amer. Math. Soc. 151 (2023), 2749-2757
- DOI: https://doi.org/10.1090/proc/15490
- Published electronically: April 6, 2023
- HTML | PDF | Request permission
Abstract:
In this short note, we show that a group acting geometrically on a CAT(0) cube complex with virtually abelian hyperplane-stabilisers must decompose virtually as a free product of free abelian groups and surface groups.References
- Aaron David Abrams, Configuration spaces and braid groups of graphs, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)–University of California, Berkeley. MR 2701024
- Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553, DOI 10.4171/dm/421
- Goulnara Arzhantseva and Damian Osajda, Infinitely presented small cancellation groups have the Haagerup property, J. Topol. Anal. 7 (2015), no. 3, 389–406. MR 3346927, DOI 10.1142/S1793525315500144
- Mladen Bestvina and Noel Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3, 445–470. MR 1465330, DOI 10.1007/s002220050168
- Jason Behrstock, Mark F. Hagen, and Alessandro Sisto, Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups, Geom. Topol. 21 (2017), no. 3, 1731–1804. MR 3650081, DOI 10.2140/gt.2017.21.1731
- Jason Behrstock, Mark Hagen, and Alessandro Sisto, Hierarchically hyperbolic spaces II: Combination theorems and the distance formula, Pacific J. Math. 299 (2019), no. 2, 257–338. MR 3956144, DOI 10.2140/pjm.2019.299.257
- Mario Bonk and Bruce Kleiner, Quasi-hyperbolic planes in hyperbolic groups, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2491–2494. MR 2146190, DOI 10.1090/S0002-9939-05-07564-7
- Marc Burger and Shahar Mozes, Finitely presented simple groups and products of trees, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 7, 747–752 (English, with English and French summaries). MR 1446574, DOI 10.1016/S0764-4442(97)86938-8
- Brian H. Bowditch, Coarse median spaces and groups, Pacific J. Math. 261 (2013), no. 1, 53–93. MR 3037559, DOI 10.2140/pjm.2013.261.53
- Nicolas Bergeron and Daniel T. Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012), no. 3, 843–859. MR 2931226, DOI 10.1353/ajm.2012.0020
- Ruth Charney and Michael W. Davis, The $K(\pi ,1)$-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995), no. 3, 597–627. MR 1303028, DOI 10.1090/S0894-0347-1995-1303028-9
- Pierre-Emmanuel Caprace and Frédéric Haglund, On geometric flats in the CAT(0) realization of Coxeter groups and Tits buildings, Canad. J. Math. 61 (2009), no. 4, 740–761. MR 2541383, DOI 10.4153/CJM-2009-040-8
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- Ruth Charney and Rose Morris-Wright, Artin groups of infinite type: trivial centers and acylindrical hyperbolicity, Proc. Amer. Math. Soc. 147 (2019), no. 9, 3675–3689. MR 3993762, DOI 10.1090/proc/14503
- Sarah Campbell and Graham A. Niblo, Hilbert space compression and exactness of discrete groups, J. Funct. Anal. 222 (2005), no. 2, 292–305. MR 2132393, DOI 10.1016/j.jfa.2005.01.012
- Indira Chatterji and Graham Niblo, From wall spaces to $\rm CAT(0)$ cube complexes, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 875–885. MR 2197811, DOI 10.1142/S0218196705002669
- Pierre-Emmanuel Caprace and Michah Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011), no. 4, 851–891. MR 2827012, DOI 10.1007/s00039-011-0126-7
- Daniel S. Farley, Finiteness and $\rm CAT(0)$ properties of diagram groups, Topology 42 (2003), no. 5, 1065–1082. MR 1978047, DOI 10.1016/S0040-9383(02)00029-0
- Daniel S. Farley, Actions of picture groups on CAT(0) cubical complexes, Geom. Dedicata 110 (2005), 221–242. MR 2136028, DOI 10.1007/s10711-004-1530-z
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- Anthony Genevois, Hyperbolicities in $\textrm {CAT}(0)$ cube complexes, Enseign. Math. 65 (2019), no. 1-2, 33–100. MR 4057355, DOI 10.4171/lem/65-1/2-2
- Anthony Genevois, Algebraic characterisation of relatively hyperbolic special groups, Israel J. Math. 241 (2021), no. 1, 301–341. MR 4242153, DOI 10.1007/s11856-021-2097-1
- Eddy Godelle and Luis Paris, $K(\pi ,1)$ and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups, Math. Z. 272 (2012), no. 3-4, 1339–1364. MR 2995171, DOI 10.1007/s00209-012-0989-9
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534, DOI 10.1007/BF02698687
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Frédéric Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008), 167–209. MR 2413337, DOI 10.1007/s10711-008-9270-0
- Frédéric Haglund and Frédéric Paulin, Simplicité de groupes d’automorphismes d’espaces à courbure négative, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 181–248 (French, with English and French summaries). MR 1668359, DOI 10.2140/gtm.1998.1.181
- Mark F. Hagen and Piotr Przytycki, Cocompactly cubulated graph manifolds, Israel J. Math. 207 (2015), no. 1, 377–394. MR 3358051, DOI 10.1007/s11856-015-1177-5
- Mark F. Hagen and Nicholas W. M. Touikan, Panel collapse and its applications, Groups Geom. Dyn. 13 (2019), no. 4, 1285–1334. MR 4033506, DOI 10.4171/ggd/524
- Frédéric Haglund and Daniel T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), no. 5, 1551–1620. MR 2377497, DOI 10.1007/s00039-007-0629-4
- Mark F. Hagen and Daniel T. Wise, Cubulating hyperbolic free-by-cyclic groups: the general case, Geom. Funct. Anal. 25 (2015), no. 1, 134–179. MR 3320891, DOI 10.1007/s00039-015-0314-y
- Mark F. Hagen and Daniel T. Wise, Cubulating hyperbolic free-by-cyclic groups: the irreducible case, Duke Math. J. 165 (2016), no. 9, 1753–1813. MR 3513573, DOI 10.1215/00127094-3450752
- A. Lonjou and C. Urech, Actions of Cremona groups on CAT(0) cube complexes, arXiv:2001.00783, 2020.
- Joseph Lauer and Daniel T. Wise, Cubulating one-relator groups with torsion, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 3, 411–429. MR 3118410, DOI 10.1017/S0305004113000285
- John Meier, When is the graph product of hyperbolic groups hyperbolic?, Geom. Dedicata 61 (1996), no. 1, 29–41. MR 1389635, DOI 10.1007/BF00149417
- Alexandre Martin and Markus Steenbock, A combination theorem for cubulation in small cancellation theory over free products, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 4, 1613–1670 (English, with English and French summaries). MR 3711135, DOI 10.5802/aif.3118
- G. A. Niblo, The singularity obstruction for group splittings, Topology Appl. 119 (2002), no. 1, 17–31. MR 1881707, DOI 10.1016/S0166-8641(01)00059-1
- Bogdan Nica, Cubulating spaces with walls, Algebr. Geom. Topol. 4 (2004), 297–309. MR 2059193, DOI 10.2140/agt.2004.4.297
- Graham Niblo and Lawrence Reeves, Groups acting on $\textrm {CAT}(0)$ cube complexes, Geom. Topol. 1 (1997), approx. 7 pp.}, issn=1465-3060, review= MR 1432323, doi=10.2140/gt.1997.1.1, DOI 10.2140/gt.1997.1.1
- G. A. Niblo and L. D. Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998), no. 3, 621–633. MR 1604899, DOI 10.1016/S0040-9383(97)00018-9
- Graham A. Niblo and Martin A. Roller, Groups acting on cubes and Kazhdan’s property (T), Proc. Amer. Math. Soc. 126 (1998), no. 3, 693–699. MR 1459140, DOI 10.1090/S0002-9939-98-04463-3
- G. A. Niblo and L. D. Reeves, Coxeter groups act on $\textrm {CAT}(0)$ cube complexes, J. Group Theory 6 (2003), no. 3, 399–413. MR 1983376, DOI 10.1515/jgth.2003.028
- Yoshiyuki Nakagawa, Makoto Tamura, and Yasushi Yamashita, Non-hyperbolic automatic groups and groups acting on CAT(0) cube complexes, Internat. J. Algebra Comput. 24 (2014), no. 6, 795–813. MR 3278385, DOI 10.1142/S0218196714500349
- Tomasz Odrzygóźdź, Cubulating random groups in the square model, Israel J. Math. 227 (2018), no. 2, 623–661. MR 3846337, DOI 10.1007/s11856-018-1734-9
- Damian Osajda, Group cubization, Duke Math. J. 167 (2018), no. 6, 1049–1055. With an appendix by Mikaël Pichot. MR 3786300, DOI 10.1215/00127094-2017-0051
- Yann Ollivier and Daniel T. Wise, Cubulating random groups at density less than $1/6$, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4701–4733. MR 2806688, DOI 10.1090/S0002-9947-2011-05197-4
- Pierre Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 415–445 (French, with English summary). MR 741395, DOI 10.1017/S0143385700002054
- Piotr Przytycki and Daniel T. Wise, Graph manifolds with boundary are virtually special, J. Topol. 7 (2014), no. 2, 419–435. MR 3217626, DOI 10.1112/jtopol/jtt009
- Piotr Przytycki and Daniel T. Wise, Mixed 3-manifolds are virtually special, J. Amer. Math. Soc. 31 (2018), no. 2, 319–347. MR 3758147, DOI 10.1090/jams/886
- M. Roller, Pocsets, median algebras and group actions; an extended study of dunwoody’s construction and sageev’s theorem, dissertation, arXiv:1607.07747, 1998.
- Michah Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3) 71 (1995), no. 3, 585–617. MR 1347406, DOI 10.1112/plms/s3-71.3.585
- Michah Sageev, $\rm CAT(0)$ cube complexes and groups, Geometric group theory, IAS/Park City Math. Ser., vol. 21, Amer. Math. Soc., Providence, RI, 2014, pp. 7–54. MR 3329724, DOI 10.1090/pcms/021/02
- Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell; Corrected 2nd printing of the 1980 English translation. MR 1954121
- Michah Sageev and Daniel T. Wise, The Tits alternative for $\textrm {CAT}(0)$ cubical complexes, Bull. London Math. Soc. 37 (2005), no. 5, 706–710. MR 2164832, DOI 10.1112/S002460930500456X
- Michah Sageev and Daniel T. Wise, Periodic flats in $\textrm {CAT}(0)$ cube complexes, Algebr. Geom. Topol. 11 (2011), no. 3, 1793–1820. MR 2821442, DOI 10.2140/agt.2011.11.1793
- Joseph Tidmore, Cocompact cubulations of mixed 3-manifolds, Groups Geom. Dyn. 12 (2018), no. 4, 1429–1460. MR 3874647, DOI 10.4171/GGD/474
- Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1–54. MR 961162, DOI 10.1515/crll.1988.391.1
- Pekka Tukia, Convergence groups and Gromov’s metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157–187. MR 1313451
- Daniel T. Wise, Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–Princeton University. MR 2694733
- D. T. Wise, Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004), no. 1, 150–214. MR 2053602, DOI 10.1007/s00039-004-0454-y
- Daniel T. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, vol. 117, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012. MR 2986461, DOI 10.1090/cbms/117
- D. Wise, The structure of groups with a quasiconvex hierarchy, volume 209 of Annals of Mathematics Studies. Princeton University Press, 2021.
- Daniel T. Wise and Daniel J. Woodhouse, A cubical flat torus theorem and the bounded packing property, Israel J. Math. 217 (2017), no. 1, 263–281. MR 3625111, DOI 10.1007/s11856-017-1445-7
Bibliographic Information
- Anthony Genevois
- Affiliation: University of Montpellier, Institut Mathématiques Alexander Grothendieck, Place Eugène Bataillon, 34090 Montpellier, France
- MR Author ID: 1208859
- Email: anthony.genevois@umontpellier.fr
- Received by editor(s): September 21, 2020
- Received by editor(s) in revised form: January 18, 2021, and January 20, 2021
- Published electronically: April 6, 2023
- Additional Notes: This work was supported by a public grant as part of the Fondation Mathématique Jacques Hadamard.
- Communicated by: David Futer
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2749-2757
- MSC (2020): Primary 20F65; Secondary 20F67
- DOI: https://doi.org/10.1090/proc/15490
- MathSciNet review: 4579353