Symmetric Banach sequence spaces respect Weyl submajorization
HTML articles powered by AMS MathViewer
- by Fedor Sukochev and Dmitriy Zanin;
- Proc. Amer. Math. Soc. 151 (2023), 2907-2917
- DOI: https://doi.org/10.1090/proc/15791
- Published electronically: April 13, 2023
- HTML | PDF | Request permission
Abstract:
Let $E$ be a symmetric Banach sequence space. We show that there exists an equivalent symmetric norm on $E$ which is monotone with respect to the Weyl (i.e., logarithmic) submajorization. Surprisingly, this purely commutative result is proved by a very non-commutative method.References
- Jonathan Arazy, Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), no. 4, 453–495. MR 516764, DOI 10.1007/BF01682937
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- K. J. Dykema and N. J. Kalton, Spectral characterization of sums of commutators. II, J. Reine Angew. Math. 504 (1998), 127–137. MR 1656763
- Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter, Noncommutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993), no. 2, 717–750. MR 1113694, DOI 10.1090/S0002-9947-1993-1113694-3
- P. G. Dodds, T. K. Dodds, F. A. Sukochev, and D. Zanin, Logarithmic submajorization, uniform majorization and Hölder type inequalities for $\tau$-measurable operators, Indag. Math. (N.S.) 31 (2020), no. 5, 809–830. MR 4143505, DOI 10.1016/j.indag.2020.02.004
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, RI, 1969. Translated from the Russian by A. Feinstein. MR 246142, DOI 10.1090/mmono/018
- Fumio Hiai, Log-majorizations and norm inequalities for exponential operators, Linear operators (Warsaw, 1994) Banach Center Publ., vol. 38, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 119–181. MR 1457004
- Alfred Horn, On the eigenvalues of a matrix with prescribed singular values, Proc. Amer. Math. Soc. 5 (1954), 4–7. MR 61573, DOI 10.1090/S0002-9939-1954-0061573-6
- N. J. Kalton, Spectral characterization of sums of commutators. I, J. Reine Angew. Math. 504 (1998), 115–125. MR 1656767, DOI 10.1515/crll.1998.102
- N. J. Kalton and F. A. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81–121. MR 2431251, DOI 10.1515/CRELLE.2008.059
- S. G. Kreĭn, Yu. Ī. Petunīn, and E. M. Semënov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, RI, 1982. Translated from the Russian by J. Szűcs. MR 649411
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 500056, DOI 10.1007/978-3-642-66557-8
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9
- J. R. Ringrose, Super-diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367–384. MR 136998, DOI 10.1112/plms/s3-12.1.367
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 119112, DOI 10.1007/978-3-642-87652-3
- A. A. Sedaev, E. M. Semenov, and F. A. Sukochev, Fully symmetric function spaces without an equivalent Fatou norm, Positivity 19 (2015), no. 3, 419–437. MR 3386117, DOI 10.1007/s11117-014-0305-5
- Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153, DOI 10.1090/surv/120
- J. von Neumann, Some matrix inequalities and metrization of matric-space, Rev. Tomsk Univ. 1 (1937), 286–300.
- Hermann Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 408–411. MR 30693, DOI 10.1073/pnas.35.7.408
Bibliographic Information
- Fedor Sukochev
- Affiliation: School of Mathematics and Statistics, University of NSW, Sydney 2052, Australia
- MR Author ID: 229620
- Email: f.sukochev@unsw.edu.au
- Dmitriy Zanin
- Affiliation: School of Mathematics and Statistics, University of NSW, Sydney 2052, Australia
- MR Author ID: 752894
- Email: d.zanin@unsw.edu.au
- Received by editor(s): June 9, 2021
- Received by editor(s) in revised form: August 6, 2021
- Published electronically: April 13, 2023
- Communicated by: Stephen Dilworth
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2907-2917
- MSC (2020): Primary 47L20, 46E30
- DOI: https://doi.org/10.1090/proc/15791
- MathSciNet review: 4579366