Local approximation of heterogeneous porous medium equation by some nonlocal dispersal problems
HTML articles powered by AMS MathViewer
- by Jian-Wen Sun and Hoang-Hung Vo;
- Proc. Amer. Math. Soc. 151 (2023), 2935-2949
- DOI: https://doi.org/10.1090/proc/16095
- Published electronically: April 13, 2023
- HTML | PDF | Request permission
Abstract:
The classical porous medium equation is widely used to model different natural phenomena related to diffusion, filtration and heat propagation. In this short communication, we prove that the solution of porous medium equation can be locally approximated by the solution of a class of nonlocal dispersal equation. Our work is a counterpart to the important works (see Berestycki et al. [J. Funct. Anal. 271 (2016), pp. 2701–2751; J. Math. Biol. 72 (2016), pp. 1693–1745]; Dipierro et al. [J. Eur. Math. Soc. (JEMS) 19 (2017), pp. 957–966; J. Geom. Anal. 29 (2019), pp. 1428–1455]; Hansen and Netuka [Potential Anal. 2 (1993), pp. 67–71]; Ignat and Rossi [J. Funct. Anal. 251 (2007), pp. 399–437]; Shen and Xie [J. Differential Equations 259 (2015), pp. 7375–7405]; Sprekels and Valdinoci [SIAM J. Control Optim. 55 (2017), pp. 70–93]).References
- D. G. Aronson, The porous medium equation, Nonlinear diffusion problems (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1224, Springer, Berlin, 1986, pp. 1–46. MR 877986, DOI 10.1007/BFb0072687
- G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 67–78 (Russian). MR 46217
- Peter W. Bates, Paul C. Fife, Xiaofeng Ren, and Xuefeng Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138 (1997), no. 2, 105–136. MR 1463804, DOI 10.1007/s002050050037
- Henri Berestycki, Jérôme Coville, and Hoang-Hung Vo, On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal. 271 (2016), no. 10, 2701–2751. MR 3548277, DOI 10.1016/j.jfa.2016.05.017
- Henri Berestycki, Jérôme Coville, and Hoang-Hung Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol. 72 (2016), no. 7, 1693–1745. MR 3498523, DOI 10.1007/s00285-015-0911-2
- Mauricio Bogoya, Blowing up boundary conditions for a nonlocal nonlinear diffusion equation in several space dimensions, Nonlinear Anal. 72 (2010), no. 1, 143–150. MR 2574926, DOI 10.1016/j.na.2009.06.062
- Haïm Brezis and Luc Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55–64. MR 820658, DOI 10.1016/0362-546X(86)90011-8
- Rafael Benguria, Haïm Brézis, and Elliott H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 (1981), no. 2, 167–180. MR 612246, DOI 10.1007/BF01942059
- Luis Caffarelli, Serena Dipierro, and Enrico Valdinoci, A logistic equation with nonlocal interactions, Kinet. Relat. Models 10 (2017), no. 1, 141–170. MR 3579567, DOI 10.3934/krm.2017006
- Luis A. Caffarelli and Avner Friedman, Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc. 252 (1979), 99–113. MR 534112, DOI 10.1090/S0002-9947-1979-0534112-2
- Florian Centler, Ingo Fetzer, and Martin Thullner, Modeling population patterns of chemotactic bacteria in homogeneous porous media, J. Theoret. Biol. 287 (2011), 82–91. MR 2973886, DOI 10.1016/j.jtbi.2011.07.024
- Emmanuel Chasseigne, Manuela Chaves, and Julio D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. (9) 86 (2006), no. 3, 271–291 (English, with English and French summaries). MR 2257732, DOI 10.1016/j.matpur.2006.04.005
- C. Cortázar, M. Elgueta, S. Martínez, and J. D. Rossi, Random walks and the porous medium equation, Rev. Un. Mat. Argentina 50 (2009), no. 2, 149–155. MR 2656532
- Carmen Cortazar, Manuel Elgueta, and Julio D. Rossi, A nonlocal diffusion equation whose solutions develop a free boundary, Ann. Henri Poincaré 6 (2005), no. 2, 269–281. MR 2136191, DOI 10.1007/s00023-005-0206-z
- Carmen Cortazar, Manuel Elgueta, and Julio D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel J. Math. 170 (2009), 53–60. MR 2506317, DOI 10.1007/s11856-009-0019-8
- Carmen Cortazar, Manuel Elgueta, Julio D. Rossi, and Noemi Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal. 187 (2008), no. 1, 137–156. MR 2358337, DOI 10.1007/s00205-007-0062-8
- Carmen Cortázar, Fernando Quirós, and Noemí Wolanski, A nonlocal diffusion problem with a sharp free boundary, Interfaces Free Bound. 21 (2019), no. 4, 441–462. MR 4046017, DOI 10.4171/ifb/430
- Serena Dipierro, Ovidiu Savin, and Enrico Valdinoci, All functions are locally $s$-harmonic up to a small error, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 4, 957–966. MR 3626547, DOI 10.4171/JEMS/684
- Serena Dipierro, Ovidiu Savin, and Enrico Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, J. Geom. Anal. 29 (2019), no. 2, 1428–1455. MR 3935264, DOI 10.1007/s12220-018-0045-z
- Serena Dipierro and Enrico Valdinoci, Continuity and density results for a one-phase nonlocal free boundary problem, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 6, 1387–1428. MR 3712006, DOI 10.1016/j.anihpc.2016.11.001
- Serena Dipierro and Enrico Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Phys. A 575 (2021), Paper No. 126052, 20. MR 4249816, DOI 10.1016/j.physa.2021.126052
- Yihong Du, Order structure and topological methods in nonlinear partial differential equations. Vol. 1, Series in Partial Differential Equations and Applications, vol. 2, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. Maximum principles and applications. MR 2205529, DOI 10.1142/9789812774446
- L. Evans, Partial differential equations, AMS, Providence, Rhode Island, 1998.
- Paul Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in nonlinear analysis, Springer, Berlin, 2003, pp. 153–191. MR 1999098
- W. Hansen and I. Netuka, Locally uniform approximation by solutions of the classical Dirichlet problem, Potential Anal. 2 (1993), no. 1, 67–71. MR 1245237, DOI 10.1007/BF01047673
- V. Hutson, S. Martinez, K. Mischaikow, and G. T. Vickers, The evolution of dispersal, J. Math. Biol. 47 (2003), no. 6, 483–517. MR 2028048, DOI 10.1007/s00285-003-0210-1
- Liviu I. Ignat and Julio D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal. 251 (2007), no. 2, 399–437. MR 2356418, DOI 10.1016/j.jfa.2007.07.013
- Chiu-Yen Kao, Yuan Lou, and Wenxian Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst. 26 (2010), no. 2, 551–596. MR 2556498, DOI 10.3934/dcds.2010.26.551
- Julián López-Gómez, Linear second order elliptic operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. MR 3235415, DOI 10.1142/8664
- M. Muskat, The flow of homogeneous fluids through porous media, McGraw Hill, New York, 1937.
- R. E. Pattle, Diffusion from an instantaneous point source with a concentration-dependent coefficient, Quart. J. Mech. Appl. Math. 12 (1959), 407–409. MR 114505, DOI 10.1093/qjmam/12.4.407
- Wenxian Shen and Xiaoxia Xie, Approximations of random dispersal operators/equations by nonlocal dispersal operators/equations, J. Differential Equations 259 (2015), no. 12, 7375–7405. MR 3401600, DOI 10.1016/j.jde.2015.08.026
- Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. MR 1301779, DOI 10.1007/978-1-4612-0873-0
- Jürgen Sprekels and Enrico Valdinoci, A new type of identification problems: optimizing the fractional order in a nonlocal evolution equation, SIAM J. Control Optim. 55 (2017), no. 1, 70–93. MR 3590646, DOI 10.1137/16M105575X
- Jian-Wen Sun, Limiting solutions of nonlocal dispersal problem in inhomogeneous media, J. Dynam. Differential Equations 34 (2022), no. 2, 1489–1504. MR 4413396, DOI 10.1007/s10884-021-10012-6
- Jian-Wen Sun, Effects of dispersal and spatial heterogeneity on nonlocal logistic equations, Nonlinearity 34 (2021), no. 8, 5434–5455. MR 4281479, DOI 10.1088/1361-6544/ac08e8
- Jian-Wen Sun, Wan-Tong Li, and Fei-Ying Yang, Approximate the Fokker-Planck equation by a class of nonlocal dispersal problems, Nonlinear Anal. 74 (2011), no. 11, 3501–3509. MR 2803077, DOI 10.1016/j.na.2011.02.034
- Jian-Wen Sun, Sharp profiles for periodic logistic equation with nonlocal dispersal, Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 46, 19. MR 4062044, DOI 10.1007/s00526-020-1710-1
- Jia-Bing Wang and Wan-Tong Li, Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats, Z. Angew. Math. Phys. 71 (2020), no. 5, Paper No. 147, 19. MR 4141606, DOI 10.1007/s00033-020-01374-w
- Juan Luis Vázquez, An introduction to the mathematical theory of the porous medium equation, Shape optimization and free boundaries (Montreal, PQ, 1990) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 380, Kluwer Acad. Publ., Dordrecht, 1992, pp. 347–389. MR 1260981
- Juan Luis Vazquez, The Dirichlet problem for the porous medium equation in bounded domains. Asymptotic behavior, Monatsh. Math. 142 (2004), no. 1-2, 81–111. MR 2065023, DOI 10.1007/s00605-004-0237-4
- Juan Luis Vázquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford Lecture Series in Mathematics and its Applications, vol. 33, Oxford University Press, Oxford, 2006. Equations of porous medium type. MR 2282669, DOI 10.1093/acprof:oso/9780199202973.001.0001
- Juan Luis Vázquez, The porous medium equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory. MR 2286292
- Ya. B. Zel′dovič and A. S. Kompaneec, On the theory of propagation of heat with the heat conductivity depending upon the temperature, Collection in honor of the seventieth birthday of academician A. F. Ioffe, Akad. Nauk SSSR, Moscow, 1950, pp. 61–71. MR 69381
- Guo-Bao Zhang and Wan-Tong Li, Nonlinear stability of traveling wavefronts in an age-structured population model with nonlocal dispersal and delay, Z. Angew. Math. Phys. 64 (2013), no. 6, 1643–1659. MR 3130637, DOI 10.1007/s00033-013-0303-7
- Guo-Bao Zhang, Wan-Tong Li, and Yu-Juan Sun, Asymptotic behavior for nonlocal dispersal equations, Nonlinear Anal. 72 (2010), no. 12, 4466–4474. MR 2639194, DOI 10.1016/j.na.2010.02.021
Bibliographic Information
- Jian-Wen Sun
- Affiliation: School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
- ORCID: 0000-0002-8384-553X
- Hoang-Hung Vo
- Affiliation: Faculty of Mathematics and Applications, Saigon University, 273 An Duong Vuong st., Ward 3, Dist. 5, Ho Chi Minh City, Vietnam
- MR Author ID: 1122177
- ORCID: 0000-0002-0404-7987
- Email: vhhung@sgu.edu.vn
- Received by editor(s): November 11, 2021
- Received by editor(s) in revised form: December 22, 2021, and February 1, 2022
- Published electronically: April 13, 2023
- Additional Notes: The first author was partially supported by NSF of China (11731005), NSF of Gansu Province (21JR7RA535) and FRFCU (lzujbky-2021-52). The second author was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant 101.02-2018.312
The second author is the corresponding author. - Communicated by: Wenxian Shen
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2935-2949
- MSC (2020): Primary 35B40, 35K57, 92D25
- DOI: https://doi.org/10.1090/proc/16095
- MathSciNet review: 4579368