The valence of harmonic polynomials viewed through the probabilistic lens
HTML articles powered by AMS MathViewer
- by Erik Lundberg;
- Proc. Amer. Math. Soc. 151 (2023), 2963-2973
- DOI: https://doi.org/10.1090/proc/16152
- Published electronically: April 13, 2023
- HTML | PDF | Request permission
Abstract:
We prove the existence of complex polynomials $p(z)$ of degree $n$ and $q(z)$ of degree $m<n$ such that the harmonic polynomial $p(z) + \overline {q(z)}$ has at least $\lceil n \sqrt {m} \rceil$ many zeros. This provides an array of new counterexamples to Wilmshurst’s conjecture that the maximum valence of harmonic polynomials $p(z)+\overline {q(z)}$ taken over polynomials $p$ of degree $n$ and $q$ of degree $m$ is $m(m-1)+3n-2$. More broadly, these examples show that there does not exist a linear (in $n$) bound on the valence with a uniform (in $m$) growth rate. The proof of this result uses a probabilistic technique based on estimating the average number of zeros of a certain family of random harmonic polynomials.References
- Noga Alon and Joel H. Spencer, The probabilistic method, 4th ed., Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016. MR 3524748
- Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1329542
- Walter Bergweiler and Alexandre Eremenko, Green’s function and anti-holomorphic dynamics on a torus, Proc. Amer. Math. Soc. 144 (2016), no. 7, 2911–2922. MR 3487224, DOI 10.1090/proc/13044
- Walter Bergweiler and Alexandre Eremenko, On the number of solutions of some transcendental equations, Anal. Math. Phys. 8 (2018), no. 2, 185–196. MR 3817849, DOI 10.1007/s13324-017-0204-6
- Pavel M. Bleher, Youkow Homma, Lyndon L. Ji, and Roland K. W. Roeder, Counting zeros of harmonic rational functions and its application to gravitational lensing, Int. Math. Res. Not. IMRN 8 (2014), 2245–2264. MR 3194017, DOI 10.1093/imrn/rns284
- Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complexity and real computation, Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. MR 1479636, DOI 10.1007/978-1-4612-0701-6
- Daoud Bshouty, Walter Hengartner, and Tiferet Suez, The exact bound on the number of zeros of harmonic polynomials, J. Anal. Math. 67 (1995), 207–218. MR 1383494, DOI 10.1007/BF02787790
- Daoud Bshouty and Abdallah Lyzzaik, On Crofoot-Sarason’s conjecture for harmonic polynomials, Comput. Methods Funct. Theory 4 (2004), no. 1, 35–41. MR 2081663, DOI 10.1007/BF03321053
- D. Bshouty and A. Lyzzaik, Problems and conjectures in planar harmonic mappings, J. Anal. 18 (2010), 69–81. MR 2850236
- Alan Edelman and Eric Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1–37. MR 1290398, DOI 10.1090/S0273-0979-1995-00571-9
- Lukas Geyer, Sharp bounds for the valence of certain harmonic polynomials, Proc. Amer. Math. Soc. 136 (2008), no. 2, 549–555. MR 2358495, DOI 10.1090/S0002-9939-07-08946-0
- J. D. Hauenstein, A. Lerario, E. Lundberg, and D. Mehta, Experiments on the zeros of harmonic polynomials using certified counting, Exp. Math. 24 (2015), no. 2, 133–141. MR 3350520, DOI 10.1080/10586458.2014.966180
- Dmitry Khavinson, Seung-Yeop Lee, and Andres Saez, Zeros of harmonic polynomials, critical lemniscates, and caustics, Complex Anal. Synerg. 4 (2018), no. 1, Paper No. 2, 20. MR 3772098, DOI 10.1186/s40627-018-0012-2
- Dmitry Khavinson and Erik Lundberg, Transcendental harmonic mappings and gravitational lensing by isothermal galaxies, Complex Anal. Oper. Theory 4 (2010), no. 3, 515–524. MR 2719790, DOI 10.1007/s11785-010-0050-0
- Dmitry Khavinson and Genevra Neumann, On the number of zeros of certain rational harmonic functions, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1077–1085. MR 2196041, DOI 10.1090/S0002-9939-05-08058-5
- Dmitry Khavinson and Grzegorz Świa̧tek, On the number of zeros of certain harmonic polynomials, Proc. Amer. Math. Soc. 131 (2003), no. 2, 409–414. MR 1933331, DOI 10.1090/S0002-9939-02-06476-6
- Seung-Yeop Lee, Antonio Lerario, and Erik Lundberg, Remarks on Wilmshurst’s theorem, Indiana Univ. Math. J. 64 (2015), no. 4, 1153–1167. MR 3385788, DOI 10.1512/iumj.2015.64.5526
- Seung-Yeop Lee and Nikolai G. Makarov, Topology of quadrature domains, J. Amer. Math. Soc. 29 (2016), no. 2, 333–369. MR 3454377, DOI 10.1090/jams828
- Seung-Yeop Lee and Andres Saez, A new lower bound for the maximal valence of harmonic polynomials, Comput. Methods Funct. Theory 17 (2017), no. 1, 139–149. MR 3620883, DOI 10.1007/s40315-016-0175-x
- Antonio Lerario and Erik Lundberg, On the zeros of random harmonic polynomials: the truncated model, J. Math. Anal. Appl. 438 (2016), no. 2, 1041–1054. MR 3466078, DOI 10.1016/j.jmaa.2016.02.039
- Wenbo V. Li and Ang Wei, On the expected number of zeros of a random harmonic polynomial, Proc. Amer. Math. Soc. 137 (2009), no. 1, 195–204. MR 2439441, DOI 10.1090/S0002-9939-08-09555-5
- Jörg Liesen and Jan Zur, How constant shifts affect the zeros of certain rational harmonic functions, Comput. Methods Funct. Theory 18 (2018), no. 4, 583–607. MR 3874883, DOI 10.1007/s40315-018-0240-8
- Jörg Liesen and Jan Zur, The maximum number of zeros of $r(z)-\overline {z}$ revisited, Comput. Methods Funct. Theory 18 (2018), no. 3, 463–472. MR 3844663, DOI 10.1007/s40315-017-0231-1
- Chang-Shou Lin and Chin-Lung Wang, Elliptic functions, Green functions and the mean field equations on tori, Ann. of Math. (2) 172 (2010), no. 2, 911–954. MR 2680484, DOI 10.4007/annals.2010.172.911
- Robert Luce, Olivier Sète, and Jörg Liesen, A note on the maximum number of zeros of $r(z)-\overline {z}$, Comput. Methods Funct. Theory 15 (2015), no. 3, 439–448. MR 3393817, DOI 10.1007/s40315-015-0110-6
- F. Nazarov and M. Sodin, Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, J. Math. Phys. Anal. Geom. 12 (2016), no. 3, 205–278. MR 3522141, DOI 10.15407/mag12.03.205
- S. H. Rhie, n-Point gravitational lenses with 5(n-1) images, arXiv:0305166, 2003.
- Olivier Sète, Robert Luce, and Jörg Liesen, Creating images by adding masses to gravitational point lenses, Gen. Relativity Gravitation 47 (2015), no. 4, Art. 42, 8. MR 3322444, DOI 10.1007/s10714-015-1876-6
- Olivier Sète, Robert Luce, and Jörg Liesen, Perturbing rational harmonic functions by poles, Comput. Methods Funct. Theory 15 (2015), no. 1, 9–35. MR 3318304, DOI 10.1007/s40315-014-0083-x
- Olivier Sète and Jan Zur, Number and location of pre-images under harmonic mappings in the plane, Ann. Fenn. Math. 46 (2021), no. 1, 225–247. MR 4277808, DOI 10.5186/aasfm.2021.4614
- T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics, vol. 75, Cambridge University Press, Cambridge, 2002. MR 1962935, DOI 10.1017/CBO9780511543074
- A. Thomack. On the zeros of random harmonic polynomials: the naive model. preprint, arXiv:1610.02611, 2016.
- Andrew Thomack and Zachariah Tyree, On the zeros of random harmonic polynomials: the Weyl model, Anal. Math. Phys. 8 (2018), no. 2, 237–253. MR 3817853, DOI 10.1007/s13324-018-0220-1
- A. S. Wilmshurst, The valence of harmonic polynomials, Proc. Amer. Math. Soc. 126 (1998), no. 7, 2077–2081. MR 1443416, DOI 10.1090/S0002-9939-98-04315-9
- A. S. Wilsmhurst, Complex harmonic mappings and the valence of harmonic polynomials, D.Phil. Thesis, University of York, England, 1994.
Bibliographic Information
- Erik Lundberg
- Affiliation: Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, Florida 33431
- MR Author ID: 819273
- ORCID: 0000-0001-9623-6023
- Email: elundber@fau.edu
- Received by editor(s): January 20, 2022
- Received by editor(s) in revised form: April 15, 2022
- Published electronically: April 13, 2023
- Additional Notes: The author gratefully acknowledges support from the Simons Foundation, grant 712397.
- Communicated by: Filippo Bracci
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2963-2973
- MSC (2020): Primary 30C15; Secondary 60G60
- DOI: https://doi.org/10.1090/proc/16152
- MathSciNet review: 4579370