Weakly saturated hypergraphs and a conjecture of Tuza
HTML articles powered by AMS MathViewer
- by Asaf Shapira and Mykhaylo Tyomkyn;
- Proc. Amer. Math. Soc. 151 (2023), 2795-2805
- DOI: https://doi.org/10.1090/proc/16197
- Published electronically: April 7, 2023
- HTML | PDF | Request permission
Abstract:
Given a fixed hypergraph $H$, let $\operatorname {wsat}(n,H)$ denote the smallest number of edges in an $n$-vertex hypergraph $G$, with the property that one can sequentially add the edges missing from $G$, so that whenever an edge is added, a new copy of $H$ is created. The study of $\operatorname {wsat}(n,H)$ was introduced by Bollobás in 1968, and turned out to be one of the most influential topics in extremal combinatorics. While for most $H$ very little is known regarding $\operatorname {wsat}(n,H)$, Alon proved in 1985 that for every graph $H$ there is a limiting constant $C_H$ so that $\operatorname {wsat}(n,H)=(C_H+o(1))n$. Tuza conjectured in 1992 that Alon’s theorem can be (appropriately) extended to arbitrary $r$-uniform hypergraphs. In this paper we prove this conjecture.References
- Noga Alon, An extremal problem for sets with applications to graph theory, J. Combin. Theory Ser. A 40 (1985), no. 1, 82–89. MR 804870, DOI 10.1016/0097-3165(85)90048-2
- L. Babai and P. Frankl, Linear algebra methods in combinatorics, University of Chicago, 1988.
- József Balogh, Béla Bollobás, Robert Morris, and Oliver Riordan, Linear algebra and bootstrap percolation, J. Combin. Theory Ser. A 119 (2012), no. 6, 1328–1335. MR 2915649, DOI 10.1016/j.jcta.2012.03.005
- József Balogh and Gábor Pete, Random disease on the square grid, Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznan, 1997), 1998, pp. 409–422. MR 1662792, DOI 10.1002/(SICI)1098-2418(199810/12)13:3/4<409::AID-RSA11>3.3.CO;2-5
- Natalie C. Behague, Hypergraph saturation irregularities, Electron. J. Combin. 25 (2018), no. 2, Paper No. 2.11, 13. MR 3799429, DOI 10.37236/7727
- A. Blokhuis, Solution of an extremal problem for sets using resultants of polynomials, Combinatorica 10 (1990), no. 4, 393–396. MR 1099252, DOI 10.1007/BF02128673
- B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965), 447–452 (English, with Russian summary). MR 183653, DOI 10.1007/BF01904851
- Béla Bollobás, Weakly $k$-saturated graphs, Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967) B. G. Teubner Verlagsgesellschaft, Leipzig, 1968, pp. 25–31. MR 244077
- Denys Bulavka, Martin Tancer, and Mykhaylo Tyomkyn, Weak saturation of multipartite hypergraphs, Preprint, arXiv:2109.03703, 2021.
- Debsoumya Chakraborti and Po-Shen Loh, Minimizing the numbers of cliques and cycles of fixed size in an $F$-saturated graph, European J. Combin. 90 (2020), 103185, 20. MR 4125530, DOI 10.1016/j.ejc.2020.103185
- Jill R. Faudree, Ralph J. Faudree, and John R. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. DS19 (2011), no. Dynamic Surveys, 36. MR 4336221
- P. Erdős, Problems and results in graph theory, The theory and applications of graphs (Kalamazoo, Mich., 1980) Wiley, New York, 1981, pp. 331–341. MR 634537
- Paul Erdős, Some new problems and results in graph theory and other branches of combinatorial mathematics, Combinatorics and graph theory (Calcutta, 1980) Lecture Notes in Math., vol. 885, Springer, Berlin-New York, 1981, pp. 9–17. MR 655605
- Paul Erdős, Zoltán Füredi, and Zsolt Tuza, Saturated $r$-uniform hypergraphs, Discrete Math. 98 (1991), no. 2, 95–104. MR 1144629, DOI 10.1016/0012-365X(91)90035-Z
- P. Erdős, A. Hajnal, and J. W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964), 1107–1110. MR 170339, DOI 10.2307/2311408
- P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), no. 1, 25–42. MR 602413, DOI 10.1007/BF02579174
- Ralph J. Faudree and Ronald J. Gould, Weak saturation numbers for multiple copies, Discrete Math. 336 (2014), 1–6. MR 3254965, DOI 10.1016/j.disc.2014.07.012
- Ralph J. Faudree, Ronald J. Gould, and Michael S. Jacobson, Weak saturation numbers for sparse graphs, Discuss. Math. Graph Theory 33 (2013), no. 4, 677–693. MR 3117048, DOI 10.7151/dmgt.1688
- M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228–249 (German). MR 1544613, DOI 10.1007/BF01504345
- P. Frankl, An extremal problem for two families of sets, European J. Combin. 3 (1982), no. 2, 125–127. MR 670845, DOI 10.1016/S0195-6698(82)80025-5
- Gil Kalai, Weakly saturated graphs are rigid, Convexity and graph theory (Jerusalem, 1981) North-Holland Math. Stud., vol. 87, North-Holland, Amsterdam, 1984, pp. 189–190. MR 791030, DOI 10.1016/S0304-0208(08)72824-X
- Gil Kalai, Hyperconnectivity of graphs, Graphs Combin. 1 (1985), no. 1, 65–79. MR 796184, DOI 10.1007/BF02582930
- Gyula Katona, Tibor Nemetz, and Miklós Simonovits, On a problem of Turán in the theory of graphs, Mat. Lapok 15 (1964), 228–238 (Hungarian, with English and Russian summaries). MR 172263
- L. Lovász, Flats in matroids and geometric graphs, Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977) Academic Press, London-New York, 1977, pp. 45–86. MR 480111
- Natasha Morrison and Jonathan A. Noel, Extremal bounds for bootstrap percolation in the hypercube, J. Combin. Theory Ser. A 156 (2018), 61–84. MR 3762103, DOI 10.1016/j.jcta.2017.11.018
- Guy Moshkovitz and Asaf Shapira, Exact bounds for some hypergraph saturation problems, J. Combin. Theory Ser. B 111 (2015), 242–248. MR 3315608, DOI 10.1016/j.jctb.2014.08.004
- Jason O’Neill and Jacques Verstraete, A generalization of the Bollobás set pairs inequality, Electron. J. Combin. 28 (2021), no. 3, Paper No. 3.8, 14. MR 4281685, DOI 10.37236/9627
- Oleg Pikhurko, The minimum size of saturated hypergraphs, Combin. Probab. Comput. 8 (1999), no. 5, 483–492. MR 1731983, DOI 10.1017/S0963548399003971
- Oleg Pikhurko, Uniform families and count matroids, Graphs Combin. 17 (2001), no. 4, 729–740. MR 1876580, DOI 10.1007/s003730170012
- Oleg Pikhurko, Weakly saturated hypergraphs and exterior algebra, Combin. Probab. Comput. 10 (2001), no. 5, 435–451. MR 1869050, DOI 10.1017/S0963548301004746
- Oleg Pikhurko, Results and open problems on minimum saturated hypergraphs, Ars Combin. 72 (2004), 111–127. MR 2069050
- J.-E. Pin, On two combinatorial problems arising from automata theory, Combinatorial mathematics (Marseille-Luminy, 1981) North-Holland Math. Stud., vol. 75, North-Holland, Amsterdam, 1983, pp. 535–548. MR 841339
- Vojtěch Rödl, On a packing and covering problem, European J. Combin. 6 (1985), no. 1, 69–78. MR 793489, DOI 10.1016/S0195-6698(85)80023-8
- Alex Scott and Elizabeth Wilmer, Combinatorics in the exterior algebra and the Bollobás two families theorem, J. Lond. Math. Soc. (2) 104 (2021), no. 4, 1812–1839. MR 4339952, DOI 10.1112/jlms.12484
- Gabriel Semanišin, On some variations of extremal graph problems, Discuss. Math. Graph Theory 17 (1997), no. 1, 67–76. MR 1633276, DOI 10.7151/dmgt.1039
- E. Sidorowicz, Size of weakly saturated graphs, Discrete Math. 307 (2007), no. 11-12, 1486–1492. MR 2311122, DOI 10.1016/j.disc.2005.11.085
- Zs. Tuza, A generalization of saturated graphs for finite languages, Proceedings of the 4th international meeting of young computer scientists, IMYCS ’86 (Smolenice Castle, 1986), 1986, pp. 287–293. MR 894100
- Zsolt Tuza, Extremal problems on saturated graphs and hypergraphs, Ars Combin. 25 (1988), no. B, 105–113. Eleventh British Combinatorial Conference (London, 1987). MR 942469
- Zsolt Tuza, Asymptotic growth of sparse saturated structures is locally determined, Discrete Math. 108 (1992), no. 1-3, 397–402. Topological, algebraical and combinatorial structures. Frolík’s memorial volume. MR 1189861, DOI 10.1016/0012-365X(92)90692-9
- A. A. Zykov, On some properties of linear complexes, Mat. Sbornik N.S. 24(66) (1949), 163–188 (Russian). MR 35428
Bibliographic Information
- Asaf Shapira
- Affiliation: School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel
- MR Author ID: 715511
- Email: asafico$@$tau.ac.il
- Mykhaylo Tyomkyn
- Affiliation: Department of Applied Mathematics, Charles University, Prague, Czech Republic
- MR Author ID: 884018
- Email: tyomkyn$@$kam.mff.cuni.cz
- Received by editor(s): November 17, 2021
- Received by editor(s) in revised form: June 24, 2022
- Published electronically: April 7, 2023
- Additional Notes: The first author was supported in part by ISF Grant 1028/16, ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.
The second author was supported in part by GAČR grant 22-19073S, ERC Synergy Grant DYNASNET 810115 and the H2020-MSCA-RISE Project CoSP-GA No. 823748. - Communicated by: Isabella Novik
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 2795-2805
- MSC (2020): Primary 05D99
- DOI: https://doi.org/10.1090/proc/16197
- MathSciNet review: 4579357