Global transfer systems of abelian compact Lie groups
HTML articles powered by AMS MathViewer
- by Miguel Barrero;
- Proc. Amer. Math. Soc. 151 (2023), 3169-3182
- DOI: https://doi.org/10.1090/proc/16310
- Published electronically: April 6, 2023
- HTML | PDF
Abstract:
Global transfer systems are equivalent to global $N_\infty$-operads, which parametrize different levels of commutativity in globally equivariant homotopy theory, where objects have compatible actions by all compact Lie groups. In this paper we explicitly describe and completely classify global transfer systems for the family of all abelian compact Lie groups.References
- Miguel Barrero, Global $n_\infty$-operads, Bull. Lond. Math. Soc., DOI 10.1112/blms.12790
- Scott Balchin, Daniel Bearup, Clelia Pech, and Constanze Roitzheim, Equivariant homotopy commutativity for $G=C_{pqr}$, Tbilisi Math. J. (2020), Special Issue on Homotopy Theory, Spectra, and Structured Ringe Spectra, 17–31.
- Scott Balchin, David Barnes, and Constanze Roitzheim, $N_\infty$-operads and associahedra, Pacific J. Math. 315 (2021), no. 2, 285–304. MR 4366744, DOI 10.2140/pjm.2021.315.285
- Andrew J. Blumberg and Michael A. Hill, Operadic multiplications in equivariant spectra, norms, and transfers, Adv. Math. 285 (2015), 658–708. MR 3406512, DOI 10.1016/j.aim.2015.07.013
- Andrew J. Blumberg and Michael A. Hill, Incomplete Tambara functors, Algebr. Geom. Topol. 18 (2018), no. 2, 723–766. MR 3773736, DOI 10.2140/agt.2018.18.723
- Andrew J. Blumberg and Michael A. Hill, Equivariant stable categories for incomplete systems of transfers, J. Lond. Math. Soc. (2) 104 (2021), no. 2, 596–633. MR 4311105, DOI 10.1112/jlms.12441
- Peter Bonventre and Luís A. Pereira, Genuine equivariant operads, Adv. Math. 381 (2021), Paper No. 107502, 133. MR 4205708, DOI 10.1016/j.aim.2020.107502
- Evan E. Franchere, Kyle Ormsby, Angélica M. Osorno, Weihang Qin, and Riley Waugh, Self-duality of the lattice of transfer systems via weak factorization systems, Homology Homotopy Appl. 24 (2022), no. 2, 115–134. MR 4467021, DOI 10.4310/hha.2022.v24.n2.a6
- Javier J. Gutiérrez and David White, Encoding equivariant commutativity via operads, Algebr. Geom. Topol. 18 (2018), no. 5, 2919–2962. MR 3848404, DOI 10.2140/agt.2018.18.2919
- Markus Hausmann, Global group laws and equivariant bordism rings, Ann. of Math. (2) 195 (2022), no. 3, 841–910. MR 4413745, DOI 10.4007/annals.2022.195.3.2
- Andre Henriques and David Gepner, Homotopy theory of orbispaces, arXiv:0701916 (2007).
- Usman Hafeez, Peter Marcus, Kyle Ormsby, and Angélica M. Osorno, Saturated and linear isometric transfer systems for cyclic groups of order $p^mq^n$, Topology Appl. 317 (2022), Paper No. 108162, 20. MR 4442623, DOI 10.1016/j.topol.2022.108162
- Sil Linskens, Denis Nardin, and Luca Pol, Global homotopy theory via partially lax limits, arXiv:2206.01556 (2022).
- Jonathan Rubin, Combinatorial $N_\infty$ operads, Algebr. Geom. Topol. 21 (2021), no. 7, 3513–3568. MR 4357612, DOI 10.2140/agt.2021.21.3513
- Jonathan Rubin, Detecting Steiner and linear isometries operads, Glasg. Math. J. 63 (2021), no. 2, 307–342. MR 4244201, DOI 10.1017/S001708952000021X
- Stefan Schwede, Global homotopy theory, New Mathematical Monographs, vol. 34, Cambridge University Press, Cambridge, 2018. MR 3838307, DOI 10.1017/9781108349161
Bibliographic Information
- Miguel Barrero
- Affiliation: IMAPP, Radboud University Nijmegen, The Netherlands
- ORCID: 0000-0003-4985-4114
- Email: m.barrero@math.ru.nl
- Received by editor(s): July 20, 2022
- Received by editor(s) in revised form: September 14, 2022, and October 4, 2022
- Published electronically: April 6, 2023
- Communicated by: Julie Bergner
- © Copyright 2023 by Miguel Barrero
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3169-3182
- MSC (2020): Primary 55P91; Secondary 06A06, 06A15, 18M60
- DOI: https://doi.org/10.1090/proc/16310
- MathSciNet review: 4579387