Hausdorff operators on Fock spaces and a coefficient multiplier problem
HTML articles powered by AMS MathViewer
- by P. Galanopoulos and G. Stylogiannis;
- Proc. Amer. Math. Soc. 151 (2023), 3023-3035
- DOI: https://doi.org/10.1090/proc/16374
- Published electronically: March 31, 2023
- HTML | PDF | Request permission
Abstract:
Let $\mu$ be a positive Borel measure on the positive real axis. We study the integral operator \begin{equation*} \mathcal {H}_{\mu }(f)(z)=\int _{(0,\infty )}\frac {1}{t}f\left (\frac {z}{t}\right ) d\mu (t),\quad z\in \mathbb {C}, \end{equation*} acting on the Fock spaces $F^{p}_{\alpha }$, $p\in [1,\infty ],\alpha >0$. Its action is easily seen to be a coefficient multiplication operator by the moment sequence \begin{equation*} \mu _n= \int _{[1,\infty )}\frac {1}{t^{n+1}} d\mu (t). \end{equation*} We prove that \begin{equation*} \|\mathcal {H}_{\mu }\|_{F^{p}_{\alpha }\to F^{p}_{\alpha }}=\int _{[1,\infty )}\frac {1}{t} d\mu (t),\quad 1\leq p\leq \infty . \end{equation*}
It turns out that $\mathcal {H}_{\mu }$ is compact on $F^{p}_{\alpha },p\in (1,\infty )$ if and only if $\mu (\{1\})=0$. In addition, we completely characterize the Schatten class membership of $\mathcal {H}_{\mu }$.
References
- Jiecheng Chen, Dashan Fan, and Jun Li, Hausdorff operators on function spaces, Chinese Ann. Math. Ser. B 33 (2012), no. 4, 537–556. MR 2996530, DOI 10.1007/s11401-012-0724-1
- Jie Cheng Chen, Da Shan Fan, and Chun Jie Zhang, Multilinear Hausdorff operators and their best constants, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 8, 1521–1530. MR 2944820, DOI 10.1007/s10114-012-1455-7
- Jie-cheng Chen, Da-shan Fan, and Si-lei Wang, Hausdorff operators on Euclidean spaces, Appl. Math. J. Chinese Univ. Ser. B 28 (2013), no. 4, 548–564. MR 3143905, DOI 10.1007/s11766-013-3228-1
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- M. Cwikel and N. J. Kalton, Interpolation of compact operators by the methods of Calderón and Gustavsson-Peetre, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 261–276. MR 1335873, DOI 10.1017/S0013091500019076
- James A. Deddens, On spectra of Hausdorff operators on $l^{2}_{+}$, Proc. Amer. Math. Soc. 72 (1978), no. 1, 74–76. MR 500207, DOI 10.1090/S0002-9939-1978-0500207-7
- Dashan Fan and Xiaoying Lin, Hausdorff operator on real Hardy spaces, Analysis (Berlin) 34 (2014), no. 4, 319–337. MR 3276134, DOI 10.1515/anly-2012-1183
- Petros Galanopoulos and Aristomenis G. Siskakis, Hausdorff matrices and composition operators, Illinois J. Math. 45 (2001), no. 3, 757–773. MR 1879233
- P. Galanopoulos and M. Papadimitrakis, Hausdorff and quasi-Hausdorff matrices on spaces of analytic functions, Canad. J. Math. 58 (2006), no. 3, 548–579. MR 2223456, DOI 10.4153/CJM-2006-023-5
- Constantine Georgakis, The Hausdorff mean of a Fourier-Stieltjes transform, Proc. Amer. Math. Soc. 116 (1992), no. 2, 465–471. MR 1096210, DOI 10.1090/S0002-9939-1992-1096210-9
- Dang Vu Giang and Ferenc Móricz, The Cesàro operator is bounded on the Hardy space $H^1$, Acta Sci. Math. (Szeged) 61 (1995), no. 1-4, 535–544. MR 1377382
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, RI, 1969. Translated from the Russian by A. Feinstein. MR 246142, DOI 10.1090/mmono/018
- Richard R. Goldberg, Convolutions and general transforms on $L^{p}$, Duke Math. J. 27 (1960), 251–259. MR 115047
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. Graduate Texts in Mathematics, 19. MR 675952, DOI 10.1007/978-1-4684-9330-6
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 30620
- T. Hytönen, J. van Neerven, M. Veraar, and L. Weis, Analysis on Banach spaces, Vol. I, Martingales and Littlewood-Paley theory. Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics, 63, Springer, Cham, 2016.
- Ha Duy Hung, Dang Ky Luong, and Thai Thuan Quang, Norm of the Hausdorff operator on the real Hardy space $H^1(\Bbb R)$, Complex Anal. Oper. Theory 12 (2018), no. 1, 235–245. MR 3741679, DOI 10.1007/s11785-017-0651-y
- Ha Duy Hung, Luong Dang Ky, and Thai Thuan Quang, Hausdorff operators on holomorphic Hardy spaces and applications, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 3, 1095–1112. MR 4091053, DOI 10.1017/prm.2018.74
- Miroljub Jevtić, Dragan Vukotić, and Miloš Arsenović, Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces, RSME Springer Series, vol. 2, Springer, Cham, 2016. MR 3587910, DOI 10.1007/978-3-319-45644-7
- Yuichi Kanjin, The Hausdorff operators on the real Hardy spaces $H^p(\Bbb R)$, Studia Math. 148 (2001), no. 1, 37–45. MR 1881438, DOI 10.4064/sm148-1-4
- Gerald Leibowitz, Discrete Hausdorff transformations, Proc. Amer. Math. Soc. 38 (1973), 541–544. MR 315508, DOI 10.1090/S0002-9939-1973-0315508-0
- E. Liflyand, Hausdorff operators on Hardy spaces, Eurasian Math. J. 4 (2013), no. 4, 101–141. MR 3382905
- Elijah Liflyand and Akihiko Miyachi, Boundedness of the Hausdorff operators in $H^p$ spaces, $0<p<1$, Studia Math. 194 (2009), no. 3, 279–292. MR 2539556, DOI 10.4064/sm194-3-4
- Elijah Liflyand and Ferenc Móricz, The Hausdorff operator is bounded on the real Hardy space $H^1(\textbf {R})$, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1391–1396. MR 1641140, DOI 10.1090/S0002-9939-99-05159-X
- B. E. Rhoades, Spectra of some Hausdorff operators, Acta Sci. Math. (Szeged) 32 (1971), 91–100. MR 305108
- Aristomenis G. Siskakis, Composition semigroups and the Cesàro operator on $H^p$, J. London Math. Soc. (2) 36 (1987), no. 1, 153–164. MR 897683, DOI 10.1112/jlms/s2-36.1.153
- Aristomenis G. Siskakis, The Cesàro operator is bounded on $H^1$, Proc. Amer. Math. Soc. 110 (1990), no. 2, 461–462. MR 1021904, DOI 10.1090/S0002-9939-1990-1021904-9
- Georgios Stylogiannis, Hausdorff operators on Bergman spaces of the upper half plane, Concr. Oper. 7 (2020), no. 1, 69–80. MR 4078180, DOI 10.1515/conop-2020-0005
- James Tung, Taylor coefficients of functions in Fock spaces, J. Math. Anal. Appl. 318 (2006), no. 2, 397–409. MR 2215157, DOI 10.1016/j.jmaa.2005.05.061
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
- Kehe Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, vol. 263, Springer, New York, 2012. MR 2934601, DOI 10.1007/978-1-4419-8801-0
Bibliographic Information
- P. Galanopoulos
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece
- MR Author ID: 678244
- ORCID: 0000-0002-4131-4474
- Email: petrosgala@math.auth.gr
- G. Stylogiannis
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece
- MR Author ID: 1029303
- ORCID: 0000-0001-9458-1640
- Email: stylog@math.auth.gr
- Received by editor(s): March 21, 2022
- Received by editor(s) in revised form: November 1, 2022
- Published electronically: March 31, 2023
- Communicated by: Filippo Bracci
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3023-3035
- MSC (2020): Primary 47B38, 30H20, 46E15
- DOI: https://doi.org/10.1090/proc/16374
- MathSciNet review: 4579375