Galvin’s problem in higher dimensions
HTML articles powered by AMS MathViewer
- by Dilip Raghavan and Stevo Todorcevic;
- Proc. Amer. Math. Soc. 151 (2023), 3103-3110
- DOI: https://doi.org/10.1090/proc/16386
- Published electronically: April 7, 2023
- HTML | PDF | Request permission
Abstract:
It is proved that for each natural number $n$, if $\left |\mathbb {R}\right |= {\aleph }_{n}$, then there is a coloring of ${\left [\mathbb {R}\right ]}^{n+2}$ into ${\aleph }_{0}$ colors that takes all colors on ${\left [X\right ]}^{n+2}$ whenever $X$ is any set of reals which is homeomorphic to $\mathbb {Q}$. This generalizes a theorem of Baumgartner and sheds further light on a problem of Galvin from the 1970s. Our result also complements and contrasts with our earlier result saying that any coloring of ${\left [\mathbb {R}\right ]}^{2}$ into finitely many colors can be reduced to at most $2$ colors on the pairs of some set of reals which is homeomorphic to $\mathbb {Q}$ when large cardinals exist.References
- James E. Baumgartner, Partition relations for countable topological spaces, J. Combin. Theory Ser. A 43 (1986), no. 2, 178–195. MR 867644, DOI 10.1016/0097-3165(86)90059-2
- Denis Campau Devlin, SOME PARTITION THEOREMS AND ULTRAFILTERS ON OMEGA, ProQuest LLC, Ann Arbor, MI, 1980. Thesis (Ph.D.)–Dartmouth College. MR 2628717
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- P. Erdős and A. Hajnal, Unsolved and solved problems in set theory, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971) Proc. Sympos. Pure Math., Vol. XXV, Published for the Association for Symbolic Logic by the American Mathematical Society, Providence, RI, 1974, pp. 269–287. MR 357122
- Paul Erdős, András Hajnal, Attila Máté, and Richard Rado, Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106, North-Holland Publishing Co., Amsterdam, 1984. MR 795592
- A. S. Kechris, V. G. Pestov, and S. Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005), no. 1, 106–189. MR 2140630, DOI 10.1007/s00039-005-0503-1
- Casimir Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14–17 (French). MR 48518, DOI 10.4064/fm-38-1-14-17
- L. Nguyen Van Thé, Structural Ramsey theory of metric spaces and topological dynamics of isometry groups, Mem. Amer. Math. Soc. 206 (2010), no. 968, x+140. MR 2667917, DOI 10.1090/S0065-9266-10-00586-7
- Dilip Raghavan and Stevo Todorcevic, Proof of a conjecture of Galvin, Forum Math. Pi 8 (2020), e15, 23. MR 4190059, DOI 10.1017/fmp.2020.12
- D. Raghavan and S. Todorcevic, A combinatorial property of rho-functions, Acta Math. Hungar. 167 (2022), no. 1, 355–363. MR 4460125, DOI 10.1007/s10474-022-01237-y
- F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. (2) 30 (1929), no. 4, 264–286. MR 1576401, DOI 10.1112/plms/s2-30.1.264
- W. Sierpiński, Sur une problème de la théorie des relations, Ann. Scuola Norm. Super. Pisa, Ser. 2 2 (1933), 239–242.
- Stevo Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), no. 3-4, 261–294. MR 908147, DOI 10.1007/BF02392561
- Stevo Todorcevic, Oscillations of sets of integers, Adv. in Appl. Math. 20 (1998), no. 2, 220–252. MR 1601383, DOI 10.1006/aama.1997.0572
- Stevo Todorcevic, Introduction to Ramsey spaces, Annals of Mathematics Studies, vol. 174, Princeton University Press, Princeton, NJ, 2010. MR 2603812, DOI 10.1515/9781400835409
- S. Todorcevic and W. Weiss, Partitioning metric spaces, Manuscript (September, 1995), 1–9.
- Andy Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn. 13 (2019), no. 1, 235–276. MR 3900770, DOI 10.4171/GGD/483
Bibliographic Information
- Dilip Raghavan
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076
- MR Author ID: 870765
- Email: dilip.raghavan@protonmail.com
- Stevo Todorcevic
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 2E4, Canada; Institut de Mathématique de Jussieu, UMR 7586, Case 247, 4 place Jussieu, 75252 Paris Cedex, France; Matematički Institut, SANU, Belgrade, Serbia
- MR Author ID: 172980
- Email: stevo@math.toronto.edu, todorcevic@math.jussieu.fr, stevo.todorcevic@sanu.ac.rs
- Received by editor(s): April 4, 2022
- Received by editor(s) in revised form: November 15, 2022
- Published electronically: April 7, 2023
- Additional Notes: The second author was partially supported by grants from NSERC (455916), CNRS (IMJ-PRG UMR7586) and SFRS (7750027-SMART)
- Communicated by: Vera Fischer
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3103-3110
- MSC (2020): Primary 03E02, 05D10, 03E55, 05C55, 54E40
- DOI: https://doi.org/10.1090/proc/16386
- MathSciNet review: 4579382