Concentration of the number of intersections of random eigenfunctions on flat tori
HTML articles powered by AMS MathViewer
- by Hoi H. Nguyen;
- Proc. Amer. Math. Soc. 151 (2023), 3127-3143
- DOI: https://doi.org/10.1090/proc/16396
- Published electronically: April 13, 2023
- HTML | PDF | Request permission
Abstract:
We show that in two dimensional flat torus the number of intersections between random eigenfunctions of general eigenvalues and a given smooth curve is almost exponentially concentrated around its mean, even when the randomness is not gaussian.References
- Riddhipratim Basu, Amir Dembo, Naomi Feldheim, and Ofer Zeitouni, Exponential concentration for zeroes of stationary Gaussian processes, Int. Math. Res. Not. IMRN 23 (2020), 9769–9796. MR 4182810, DOI 10.1093/imrn/rny277
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), no. 12, 2083–2091. MR 489542, DOI 10.1088/0305-4470/10/12/016
- Jean Bourgain, On toral eigenfunctions and the random wave model, Israel J. Math. 201 (2014), no. 2, 611–630. MR 3265298, DOI 10.1007/s11856-014-1037-z
- Jean Bourgain and Zeév Rudnick, On the geometry of the nodal lines of eigenfunctions of the two-dimensional torus, Ann. Henri Poincaré 12 (2011), no. 6, 1027–1053. MR 2823207, DOI 10.1007/s00023-011-0098-z
- Jean Bourgain and Zeév Rudnick, Restriction of toral eigenfunctions to hypersurfaces and nodal sets, Geom. Funct. Anal. 22 (2012), no. 4, 878–937. MR 2984120, DOI 10.1007/s00039-012-0186-3
- Jean Bourgain and Zeév Rudnick, Nodal intersections and $L^p$ restriction theorems on the torus, Israel J. Math. 207 (2015), no. 1, 479–505. MR 3358055, DOI 10.1007/s11856-015-1183-7
- Jeremiah Buckley and Igor Wigman, On the number of nodal domains of toral eigenfunctions, Ann. Henri Poincaré 17 (2016), no. 11, 3027–3062. MR 3556515, DOI 10.1007/s00023-016-0476-7
- Mei-Chu Chang, Hoi Nguyen, Oanh Nguyen, and Van Vu, Random eigenfunctions on flat tori: universality for the number of intersections, Int. Math. Res. Not. IMRN 24 (2020), 9933–9973. MR 4190392, DOI 10.1093/imrn/rny267
- Javier Cilleruelo and Andrew Granville, Lattice points on circles, squares in arithmetic progressions and sumsets of squares, Additive combinatorics, CRM Proc. Lecture Notes, vol. 43, Amer. Math. Soc., Providence, RI, 2007, pp. 241–262. MR 2359475, DOI 10.1090/crmp/043/12
- P. X. Gallagher, The large sieve, Mathematika 14 (1967), 14–20. MR 214562, DOI 10.1112/S0025579300007968
- G. Halász, Estimates for the concentration function of combinatorial number theory and probability, Period. Math. Hungar. 8 (1977), no. 3-4, 197–211. MR 494478, DOI 10.1007/BF02018403
- Riccardo W. Maffucci, Nodal intersections of random eigenfunctions against a segment on the 2-dimensional torus, Monatsh. Math. 183 (2017), no. 2, 311–328. MR 3641930, DOI 10.1007/s00605-016-1001-2
- Fedor Nazarov and Mikhail Sodin, On the number of nodal domains of random spherical harmonics, Amer. J. Math. 131 (2009), no. 5, 1337–1357. MR 2555843, DOI 10.1353/ajm.0.0070
- F. Nazarov and M. Sodin, Fluctuations in random complex zeroes: asymptotic normality revisited, Int. Math. Res. Not. IMRN 24 (2011), 5720–5759. MR 2863379, DOI 10.1093/imrn/rnr007
- Oanh Nguyen and Van Vu, Roots of random functions: a framework for local universality, Amer. J. Math. 144 (2022), no. 1, 1–74. MR 4367414, DOI 10.1353/ajm.2022.0000
- Hoi H. Nguyen and Van H. Vu, Small ball probability, inverse theorems, and applications, Erdös centennial, Bolyai Soc. Math. Stud., vol. 25, János Bolyai Math. Soc., Budapest, 2013, pp. 409–463. MR 3203607, DOI 10.1007/978-3-642-39286-3_{1}6
- H. Nguyen and O. Zeitouni, Exponential concentration for the number of roots of random trigonometric polynomials, Ann. Inst. Henri Poincaré (to appear).
- Maurizia Rossi and Igor Wigman, Asymptotic distribution of nodal intersections for arithmetic random waves, Nonlinearity 31 (2018), no. 10, 4472–4516. MR 3846437, DOI 10.1088/1361-6544/aaced4
- Yoni Rozenshein, The number of nodal components of arithmetic random waves, Int. Math. Res. Not. IMRN 22 (2017), 6990–7027. MR 3737329, DOI 10.1093/imrn/rnw226
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 344043
- Zeév Rudnick and Igor Wigman, Nodal intersections for random eigenfunctions on the torus, Amer. J. Math. 138 (2016), no. 6, 1605–1644. MR 3595496, DOI 10.1353/ajm.2016.0048
- Mark Rudelson and Roman Vershynin, Smallest singular value of a random rectangular matrix, Comm. Pure Appl. Math. 62 (2009), no. 12, 1707–1739. MR 2569075, DOI 10.1002/cpa.20294
- Zeév Rudnick, Igor Wigman, and Nadav Yesha, Nodal intersections for random waves on the 3-dimensional torus, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2455–2484 (English, with English and French summaries). MR 3580177, DOI 10.5802/aif.3068
Bibliographic Information
- Hoi H. Nguyen
- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
- MR Author ID: 833497
- Email: nguyen.1261@math.osu.edu
- Received by editor(s): August 9, 2020
- Received by editor(s) in revised form: November 3, 2022
- Published electronically: April 13, 2023
- Additional Notes: The author was partially supported by National Science Foundation CAREER grant DMS-1752345.
- Communicated by: Zhen-Qing Chen
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3127-3143
- MSC (2020): Primary 60C05, 60F10
- DOI: https://doi.org/10.1090/proc/16396
- MathSciNet review: 4579384