Sobolev-type inequalities and eigenvalue growth on graphs with finite measure
HTML articles powered by AMS MathViewer
- by Bobo Hua, Matthias Keller, Michael Schwarz and Melchior Wirth;
- Proc. Amer. Math. Soc. 151 (2023), 3401-3414
- DOI: https://doi.org/10.1090/proc/14361
- Published electronically: April 28, 2023
- HTML | PDF | Request permission
Abstract:
In this note we study the eigenvalue growth of infinite graphs with discrete spectrum. We assume that the corresponding Dirichlet forms satisfy certain Sobolev-type inequalities and that the total measure is finite. In this sense, the associated operators on these graphs display similarities to elliptic operators on bounded domains in the continuum. Specifically, we prove lower bounds on the eigenvalue growth and show by examples that corresponding upper bounds cannot be established.References
- Michel Bonnefont, Sylvain Golénia, and Matthias Keller, Eigenvalue asymptotics for Schrödinger operators on sparse graphs, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 1969–1998 (English, with English and French summaries). MR 3449203, DOI 10.5802/aif.2979
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Shiu Yuen Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), no. 3, 289–297. MR 378001, DOI 10.1007/BF01214381
- Shiu Yuen Cheng and Peter Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helv. 56 (1981), no. 3, 327–338. MR 639355, DOI 10.1007/BF02566216
- F. R. K. Chung and S.-T. Yau, Eigenvalues of graphs and Sobolev inequalities, Combin. Probab. Comput. 4 (1995), no. 1, 11–25. MR 1336652, DOI 10.1017/S0963548300001449
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, 1953. MR 65391
- Harold Donnelly and Peter Li, Pure point spectrum and negative curvature for noncompact manifolds, Duke Math. J. 46 (1979), no. 3, 497–503. MR 544241
- Agelos Georgakopoulos, Sebastian Haeseler, Matthias Keller, Daniel Lenz, and Radosław K. Wojciechowski, Graphs of finite measure, J. Math. Pures Appl. (9) 103 (2015), no. 5, 1093–1131 (English, with English and French summaries). MR 3333051, DOI 10.1016/j.matpur.2014.10.006
- Bobo Hua and Delio Mugnolo, Time regularity and long-time behavior of parabolic $p$-Laplace equations on infinite graphs, J. Differential Equations 259 (2015), no. 11, 6162–6190. MR 3397320, DOI 10.1016/j.jde.2015.07.018
- Matthias Keller, The essential spectrum of the Laplacian on rapidly branching tessellations, Math. Ann. 346 (2010), no. 1, 51–66. MR 2558886, DOI 10.1007/s00208-009-0384-y
- M. Keller and D. Lenz, Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom. 5 (2010), no. 4, 198–224. MR 2662456, DOI 10.1051/mmnp/20105409
- Matthias Keller and Daniel Lenz, Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew. Math. 666 (2012), 189–223. MR 2920886, DOI 10.1515/CRELLE.2011.122
- Matthias Keller, Daniel Lenz, Florentin Münch, Marcel Schmidt, and András Telcs, Note on short-time behavior of semigroups associated to self-adjoint operators, Bull. Lond. Math. Soc. 48 (2016), no. 6, 935–944. MR 3608938, DOI 10.1112/blms/bdw054
- Matthias Keller, Daniel Lenz, Marcel Schmidt, and Radosław K. Wojciechowski, Note on uniformly transient graphs, Rev. Mat. Iberoam. 33 (2017), no. 3, 831–860. MR 3713033, DOI 10.4171/RMI/957
- Matthias Keller, Shiping Liu, and Peyerimhoff Norbert, A note on eigenvalue bounds for non-compact manifolds, Preprint arXiv:1706.02437 (2017).
- Matthias Keller and Michael Schwarz, The Kazdan-Warner equation on canonically compactifiable graphs, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 70, 18. MR 3776360, DOI 10.1007/s00526-018-1329-7
- Daniel Lenz, Marcel Schmidt, and Peter Stollmann, Topological Poincaré type inequalities and lower bounds on the infimum of the spectrum for graphs, ArXiv e-prints (2018).
- G. V. Rozenblyum and M. Z. Solomyak, On spectral estimates for Schrödinger-type operators: the case of small local dimension, Funktsional. Anal. i Prilozhen. 44 (2010), no. 4, 21–33 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 44 (2010), no. 4, 259–269. MR 2768562, DOI 10.1007/s10688-010-0037-7
- Buchin Su, Lectures on differential geometry, World Scientific Publishing Co., Singapore, 1980. Translated from the Chinese by K. T. Chang; With a foreword by S. S. Chern. MR 664600
- Wolfgang Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000. MR 1743100, DOI 10.1017/CBO9780511470967
- Radoslaw Krzysztof Wojciechowski, Stochastic completeness of graphs, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–City University of New York. MR 2711706
Bibliographic Information
- Bobo Hua
- Affiliation: School of Mathematical Sciences, LMNS, Fudan University, Shanghai 200433, China
- MR Author ID: 865783
- Email: bobohua@fudan.edu.cn
- Matthias Keller
- Affiliation: Institut für Mathematik, Universität Potsdam, 14476 Potsdam, Germany
- MR Author ID: 886028
- Email: {matthias.keller@uni-potsdam.de}
- Michael Schwarz
- Affiliation: Institut für Mathematik, Universität Potsdam, 14476 Potsdam, Germany
- MR Author ID: 1259631
- Email: m.schwarz@dotsource.de
- Melchior Wirth
- Affiliation: Institute of Mathematics, Department of Mathematics and Computer Science, Friedrich Schiller University Jena, 07737 Jena, Germany; and Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
- MR Author ID: 1089537
- Email: melchior.wirth@ist.ac.at
- Received by editor(s): April 24, 2018
- Received by editor(s) in revised form: August 4, 2018
- Published electronically: April 28, 2023
- Additional Notes: The second author was supported by the priority program SPP2026 of the German Research Foundation (DFG)
The fourth author was supported by the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes) and by the German Research Foundation (DFG) via RTG 1523/2 - Communicated by: Guofang Wei
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3401-3414
- MSC (2020): Primary 47A75; Secondary 05C63, 39A70
- DOI: https://doi.org/10.1090/proc/14361
- MathSciNet review: 4591775