A short proof for Hopf bifurcation in Gurtin-MacCamy’s population dynamics model
HTML articles powered by AMS MathViewer
- by Arnaud Ducrot, Hao Kang and Pierre Magal;
- Proc. Amer. Math. Soc. 151 (2023), 3561-3575
- DOI: https://doi.org/10.1090/proc/15892
- Published electronically: April 28, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we provide a short proof for the Hopf bifurcation theorem in the Gurtin-MacCamy’s population dynamics model. Here we use the Crandall and Rabinowitz’s approach, based on the implicit function theorem. Compared with previous methods, here we require the age-specific birth rate to be slightly smoother (roughly of bounded variation), but we have a huge gain for the length of the proof.References
- Stefano Bertoni, Periodic solutions for non-linear equations of structured populations, J. Math. Anal. Appl. 220 (1998), no. 1, 250–267. MR 1613952, DOI 10.1006/jmaa.1997.5878
- Michael G. Crandall and Paul H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal. 67 (1977), no. 1, 53–72. MR 467844, DOI 10.1007/BF00280827
- J. M. Cushing, Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics, Comput. Math. Appl. 9 (1983), no. 3, 459–478. Hyperbolic partial differential equations. MR 702665, DOI 10.1016/0898-1221(83)90060-3
- J. M. Cushing, An introduction to structured population dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. MR 1636703, DOI 10.1137/1.9781611970005
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- A. Ducrot, Z. Liu, and P. Magal, Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl. 341 (2008), no. 1, 501–518. MR 2394101, DOI 10.1016/j.jmaa.2007.09.074
- Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462
- Morton E. Gurtin and Richard C. MacCamy, Non-linear age-dependent population dynamics, Arch. Rational Mech. Anal. 54 (1974), 281–300. MR 354068, DOI 10.1007/BF00250793
- Jack K. Hale and Hüseyin Koçak, Dynamics and bifurcations, Texts in Applied Mathematics, vol. 3, Springer-Verlag, New York, 1991. MR 1138981, DOI 10.1007/978-1-4612-4426-4
- Brian D. Hassard, Nicholas D. Kazarinoff, and Yieh Hei Wan, Theory and applications of Hopf bifurcation, London Mathematical Society Lecture Note Series, vol. 41, Cambridge University Press, Cambridge-New York, 1981. MR 603442
- T. Kostova and J. Li, Oscillations and stability due to juvenile competitive effects on adult fertility, Comput. Math. Appl. 32 (1996), no. 11, 57–70.
- Zhihua Liu, Pierre Magal, and Shigui Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys. 62 (2011), no. 2, 191–222. MR 2786149, DOI 10.1007/s00033-010-0088-x
- Pierre Magal and Shigui Ruan, On integrated semigroups and age structured models in $L^p$ spaces, Differential Integral Equations 20 (2007), no. 2, 197–239. MR 2294465
- Pierre Magal and Shigui Ruan, Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models, Mem. Amer. Math. Soc. 202 (2009), no. 951, vi+71. MR 2559965, DOI 10.1090/S0065-9266-09-00568-7
- Pierre Magal and Shigui Ruan, Theory and applications of abstract semilinear Cauchy problems, Applied Mathematical Sciences, vol. 201, Springer, Cham, 2018. With a foreword by Glenn Webb. MR 3887640, DOI 10.1007/978-3-030-01506-0
- Jan Prüss, On the qualitative behaviour of populations with age-specific interactions, Comput. Math. Appl. 9 (1983), no. 3, 327–339. Hyperbolic partial differential equations. MR 702651, DOI 10.1016/0898-1221(83)90020-2
- J. H. Swart, Hopf bifurcation and the stability of nonlinear age-dependent population models, Comput. Math. Appl. 15 (1988), no. 6-8, 555–564. Hyperbolic partial differential equations. V. MR 953565, DOI 10.1016/0898-1221(88)90280-5
Bibliographic Information
- Arnaud Ducrot
- Affiliation: UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, Normandie Univ, 76600, Le Havre, France
- MR Author ID: 724386
- Email: arnaud.ducrot@univ-lehavre.fr
- Hao Kang
- Affiliation: UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, Normandie Univ, 76600, Le Havre, France; and Center for Applied Mathematics, Tianjin University, Tianjin 300072, People’s Republic of China
- MR Author ID: 1400381
- Email: haokang_tju@163.com
- Pierre Magal
- Affiliation: Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France; and CNRS, IMB, UMR 5251, F-33400 Talence, France
- MR Author ID: 618325
- ORCID: 0000-0002-4776-0061
- Email: pierre.magal@u-bordeaux.fr
- Received by editor(s): May 13, 2021
- Received by editor(s) in revised form: October 11, 2021
- Published electronically: April 28, 2023
- Communicated by: Wenxian Shen
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3561-3575
- MSC (2020): Primary 92D25, 35B32, 47D62
- DOI: https://doi.org/10.1090/proc/15892
- MathSciNet review: 4591788