Fake mu’s
HTML articles powered by AMS MathViewer
- by Greg Martin, Michael J. Mossinghoff and Timothy S. Trudgian;
- Proc. Amer. Math. Soc. 151 (2023), 3229-3244
- DOI: https://doi.org/10.1090/proc/16186
- Published electronically: May 5, 2023
- HTML | PDF | Request permission
Abstract:
Let $\digamma (n)$ denote a multiplicative function with range $\{-1,0,1\}$, and let $F(x) = \sum _{n=1}^{\left \lfloor x\right \rfloor } \digamma (n)$. Then $F(x)/\sqrt {x} = a\sqrt {x} + b + E(x)$, where $a$ and $b$ are constants and $E(x)$ is an error term that either tends to $0$ in the limit or is expected to oscillate about $0$ in a roughly balanced manner. We say $F(x)$ has persistent bias $b$ (at the scale of $\sqrt {x}$) in the first case, and apparent bias $b$ in the latter. For example, if $\digamma (n)=\mu (n)$, the Möbius function, then $F(x) = \sum _{n=1}^{\left \lfloor x\right \rfloor } \mu (n)$ has apparent bias $0$, while if $\digamma (n)=\lambda (n)$, the Liouville function, then $F(x) = \sum _{n=1}^{\left \lfloor x\right \rfloor } \lambda (n)$ has apparent bias $1/\zeta (1/2)$. We study the bias when $\digamma (p^k)$ is independent of the prime $p$, and call such functions fake $\mu ’s$. We investigate the conditions required for such a function to exhibit a persistent or apparent bias, determine the functions in this family with maximal and minimal bias of each type, and characterize the functions with no bias. For such a function $F(x)$ with apparent bias $b$, we also show that $F(x)/\sqrt {x}-a\sqrt {x}-b$ changes sign infinitely often.References
- Emre Alkan, Biased behavior of weighted Mertens sums, Int. J. Number Theory 16 (2020), no. 3, 547–577. MR 4079395, DOI 10.1142/S1793042120500281
- Emre Alkan, Variations on criteria of Pólya and Turán for the Riemann hypothesis, J. Number Theory 225 (2021), 90–124. MR 4231545, DOI 10.1016/j.jnt.2021.01.004
- R. Balasubramanian, K. Ramachandra, and M. V. Subbarao, On the error function in the asymptotic formula for the counting function of $k$-full numbers, Acta Arith. 50 (1988), no. 2, 107–118. MR 945261, DOI 10.4064/aa-50-2-107-118
- Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff, Sign changes in sums of the Liouville function, Math. Comp. 77 (2008), no. 263, 1681–1694. MR 2398787, DOI 10.1090/S0025-5718-08-02036-X
- Andrey Feuerverger and Greg Martin, Biases in the Shanks-Rényi prime number race, Experiment. Math. 9 (2000), no. 4, 535–570. MR 1806291, DOI 10.1080/10586458.2000.10504659
- C. B. Haselgrove, A disproof of a conjecture of Pólya, Mathematika 5 (1958), 141–145. MR 104638, DOI 10.1112/S0025579300001480
- Peter Humphries, The distribution of weighted sums of the Liouville function and Pólya’s conjecture, J. Number Theory 133 (2013), no. 2, 545–582. MR 2994374, DOI 10.1016/j.jnt.2012.08.011
- Peter Humphries, Snehal M. Shekatkar, and Tian An Wong, Biases in prime factorizations and Liouville functions for arithmetic progressions, J. Théor. Nombres Bordeaux 31 (2019), no. 1, 1–25 (English, with English and French summaries). MR 3996180, DOI 10.5802/jtnb.1066
- Greg Hurst, Computations of the Mertens function and improved bounds on the Mertens conjecture, Math. Comp. 87 (2018), no. 310, 1013–1028. MR 3739227, DOI 10.1090/mcom/3275
- A. E. Ingham, On two conjectures in the theory of numbers, Amer. J. Math. 64 (1942), 313–319. MR 6202, DOI 10.2307/2371685
- R. Sherman Lehman, On Liouville’s function, Math. Comp. 14 (1960), 311–320. MR 120198, DOI 10.1090/S0025-5718-1960-0120198-5
- Jan van de Lune and Robert E. Dressler, Some theorems concerning the number theoretic function $\omega (n)$, J. Reine Angew. Math. 277 (1975), 117–119. MR 384726, DOI 10.1515/crll.1975.277.117
- Xianchang Meng, The distribution of $k$-free numbers and the derivative of the Riemann zeta-function, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 2, 293–317. MR 3604916, DOI 10.1017/S0305004116000554
- F. Mertens, Über eine zahlentheoretische Function, Sitzungsber. Akad. Wiss. Math.-Nat. Wien 106(Abt. 2a) (1897), 761–830.
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- Michael J. Mossinghoff, Tomás Oliveira e Silva, and Timothy S. Trudgian, The distribution of $k$-free numbers, Math. Comp. 90 (2021), no. 328, 907–929. MR 4194167, DOI 10.1090/mcom/3581
- Michael J. Mossinghoff and Timothy S. Trudgian, Between the problems of Pólya and Turán, J. Aust. Math. Soc. 93 (2012), no. 1-2, 157–171. MR 3062002, DOI 10.1017/S1446788712000201
- Michael J. Mossinghoff and Timothy S. Trudgian, The Liouville function and the Riemann hypothesis, Exploring the Riemann zeta function, Springer, Cham, 2017, pp. 201–221. MR 3700043
- Michael J. Mossinghoff and Timothy S. Trudgian, A tale of two omegas, 75 years of mathematics of computation, Contemp. Math., vol. 754, Amer. Math. Soc., [Providence], RI, [2020] ©2020, pp. 343–364. MR 4132130, DOI 10.1090/conm/754/15149
- Michael J. Mossinghoff and Timothy S. Trudgian, Oscillations in weighted arithmetic sums, Int. J. Number Theory 17 (2021), no. 7, 1697–1716. MR 4295379, DOI 10.1142/S1793042121500561
- Nathan Ng, The distribution of the summatory function of the Möbius function, Proc. London Math. Soc. (3) 89 (2004), no. 2, 361–389. MR 2078705, DOI 10.1112/S0024611504014741
- A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture, J. Reine Angew. Math. 357 (1985), 138–160. MR 783538, DOI 10.1515/crll.1985.357.138
- Georg Pólya, Verschiedene Bemerkungen zur Zahlentheorie, Jahresber. Deutsch. Math.-Verein, 28 (1919), 31–40.
- Michael Rubinstein and Peter Sarnak, Chebyshev’s bias, Experiment. Math. 3 (1994), no. 3, 173–197. MR 1329368, DOI 10.1080/10586458.1994.10504289
- Minoru Tanaka, A numerical investigation on cumulative sum of the Liouville function, Tokyo J. Math. 3 (1980), no. 1, 187–189. MR 584557, DOI 10.3836/tjm/1270216093
- Minoru Tanaka, On the Möbius and allied functions, Tokyo J. Math. 3 (1980), no. 2, 215–218. MR 605090, DOI 10.3836/tjm/1270472994
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
Bibliographic Information
- Greg Martin
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- MR Author ID: 619056
- ORCID: 0000-0002-8476-9495
- Email: gerg@math.ubc.ca
- Michael J. Mossinghoff
- Affiliation: Center for Communications Research, Princeton, New Jersey
- MR Author ID: 630072
- ORCID: 0000-0002-7983-5427
- Email: m.mossinghoff@idaccr.org
- Timothy S. Trudgian
- Affiliation: School of Science, UNSW Canberra at ADFA, ACT, Australia
- MR Author ID: 909247
- Email: t.trudgian@adfa.edu.au
- Received by editor(s): December 13, 2021
- Received by editor(s) in revised form: June 6, 2022, and June 15, 2022
- Published electronically: May 5, 2023
- Additional Notes: This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.
This work was supported by a Future Fellowship (FT160100094 to T. S. Trudgian) from the Australian Research Council. - Communicated by: Amanda Folsom
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3229-3244
- MSC (2020): Primary 11N37; Secondary 11A25, 11M20, 11M26, 11Y70
- DOI: https://doi.org/10.1090/proc/16186
- MathSciNet review: 4591762