A projection from filling currents to Teichmüller space
HTML articles powered by AMS MathViewer
- by Sebastian Hensel and Jenya Sapir;
- Proc. Amer. Math. Soc. 151 (2023), 3621-3633
- DOI: https://doi.org/10.1090/proc/16311
- Published electronically: April 20, 2023
- HTML | PDF | Request permission
Abstract:
Let $S$ be a closed, genus $g$ surface. The space of geodesic currents on $S$ encompasses the set of closed curves up to homotopy, as well as Teichmüller space, and many other spaces of structures on $S$. We show that one can define a mapping class group equivariant, length minimizing projection from the set of filling geodesic currents down to Teichmüller space, and prove some basic properties of this projection to show that it is well-behaved.References
- Tarik Aougab, Jonah Gaster, Priyam Patel, and Jenya Sapir, Building hyperbolic metrics suited to closed curves and applications to lifting simply, Math. Res. Lett. 24 (2017), no. 3, 593–617. MR 3696596, DOI 10.4310/MRL.2017.v24.n3.a1
- Tarik Aougab and Juan Souto, Counting curve types, Amer. J. Math. 140 (2018), no. 6, 1423–1441. MR 3884635, DOI 10.1353/ajm.2018.0043
- Ara Basmajian, Universal length bounds for non-simple closed geodesics on hyperbolic surfaces, J. Topol. 6 (2013), no. 2, 513–524. MR 3065183, DOI 10.1112/jtopol/jtt005
- M. Burger, A. Iozzi, A. Parreau, and M. B. Pozzetti, Currents, systoles, and compactifications of character varieties, Proc. Lond. Math. Soc. (3) 123 (2021), no. 6, 565–596. MR 4368682, DOI 10.1112/plms.12419
- M. Burger, A. Iozzi, A. Parreau, and M. B. Pozzetti, Positive crossratios, barycenters, trees and applications to maximal representations, arXiv:2103.17161, 2021.
- Francis Bonahon, Structures géométriques sur les variétés de dimension 3 et applications, PhD thesis, Université Paris-Sud, 1985.
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162. MR 931208, DOI 10.1007/BF01393996
- Young-Eun Choi, Kasra Rafi, and Caroline Series, Lines of minima are uniformly quasigeodesic, Pacific J. Math. 237 (2008), no. 1, 21–44. MR 2415205, DOI 10.2140/pjm.2008.237.21
- Young-Eun Choi, Kasra Rafi, and Caroline Series, Lines of minima and Teichmüller geodesics, Geom. Funct. Anal. 18 (2008), no. 3, 698–754. MR 2438996, DOI 10.1007/s00039-008-0675-6
- Moon Duchin, Christopher J. Leininger, and Kasra Rafi, Length spectra and degeneration of flat metrics, Invent. Math. 182 (2010), no. 2, 231–277. MR 2729268, DOI 10.1007/s00222-010-0262-y
- Raquel Díaz and Caroline Series, Limit points of lines of minima in Thurston’s boundary of Teichmüller space, Algebr. Geom. Topol. 3 (2003), 207–234. MR 1997320, DOI 10.2140/agt.2003.3.207
- Jonah Gaster, Infima of length functions and dual cube complexes, Algebr. Geom. Topol. 17 (2017), no. 2, 1041–1057. MR 3623681, DOI 10.2140/agt.2017.17.1041
- Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265. MR 690845, DOI 10.2307/2007076
- Steven P. Kerckhoff, Lines of minima in Teichmüller space, Duke Math. J. 65 (1992), no. 2, 187–213. MR 1150583, DOI 10.1215/S0012-7094-92-06507-0
- François Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 3, 437–469 (English, with English and French summaries). MR 2482204, DOI 10.24033/asens.2072
- Giuseppe Martone and Tengren Zhang, Positively ratioed representations, Comment. Math. Helv. 94 (2019), no. 2, 273–345. MR 3942786, DOI 10.4171/CMH/461
- Toshihiro Nakanishi, The lengths of the closed geodesics on a Riemann surface with self-intersections, Tohoku Math. J. (2) 41 (1989), no. 4, 527–541. MR 1025320, DOI 10.2748/tmj/1178227725
- Jean-Pierre Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. (2) 131 (1990), no. 1, 151–162 (French). MR 1038361, DOI 10.2307/1971511
- Hugo Parlier, Lengths of geodesics on Riemann surfaces with boundary, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 227–236. MR 2173363
- Athanase Papadopoulos and Guillaume Théret, Shortening all the simple closed geodesics on surfaces with boundary, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1775–1784. MR 2587462, DOI 10.1090/S0002-9939-09-10195-8
- Jenya Sapir, Orbits of non-simple closed curves on a surface, arXiv:1602.09093, 2016.
- William P. Thurston, Minimal stretch maps between hyperbolic surfaces, arXiv:math/9801039, 1998.
- Scott A. Wolpert, Convexity of geodesic-length functions: a reprise, Spaces of Kleinian groups, London Math. Soc. Lecture Note Ser., vol. 329, Cambridge Univ. Press, Cambridge, 2006, pp. 233–245. MR 2258752
- Akira Yamada, On Marden’s universal constant of Fuchsian groups. II, J. Analyse Math. 41 (1982), 234–248. MR 687954, DOI 10.1007/BF02803403
Bibliographic Information
- Sebastian Hensel
- Affiliation: Mathematisches Institut der LMU, Theresienstr. 39, D-80333 München, Germany
- MR Author ID: 938076
- ORCID: 0000-0002-9369-4173
- Email: hensel@math.lmu.de
- Jenya Sapir
- Affiliation: Department of Mathematics and Statistics, Binghamton University, 4400 Vestal Parkway E, Binghamton, New York 13902
- MR Author ID: 835451
- Email: sapir@math.binghamton.edu
- Received by editor(s): March 29, 2022
- Received by editor(s) in revised form: September 27, 2022, and October 5, 2022
- Published electronically: April 20, 2023
- Additional Notes: The first author was supported by DFG SPP 2026 “Geometry at Infinity”
- Communicated by: David Futer
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3621-3633
- MSC (2020): Primary 57K20; Secondary 30F60
- DOI: https://doi.org/10.1090/proc/16311
- MathSciNet review: 4591793