Fredholm composition operators on Hardy-Sobolev spaces with bounded reproducing kernel
HTML articles powered by AMS MathViewer
- by Li He;
- Proc. Amer. Math. Soc. 151 (2023), 3457-3468
- DOI: https://doi.org/10.1090/proc/16319
- Published electronically: May 12, 2023
- HTML | PDF | Request permission
Abstract:
For any real $\beta$ let $H^2_\beta$ be the Hardy-Sobolev space on the unit ball $\mathbb {B}_{n} , n\geq 1$. $H^2_\beta$ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $\beta >n/2$. In this paper, we characterize when the composition operator $C_{\varphi }$ on $H^{2}_{\beta }$ is Fredholm for a non-constant analytic map $\varphi :\mathbb {B}_{n}\to \mathbb {B}_{n}$ .References
- Ali Abkar, Guangfu Cao, and Kehe Zhu, The commutant of some shift operators, Complex Anal. Oper. Theory 14 (2020), no. 6, Paper No. 58, 12. MR 4126442, DOI 10.1007/s11785-020-01015-0
- John R. Akeroyd and Shanda R. Fulmer, Closed-range composition operators on weighted Bergman spaces, Integral Equations Operator Theory 72 (2012), no. 1, 103–114. MR 2872608, DOI 10.1007/s00020-011-1912-1
- Paul S. Bourdon, Density of the polynomials in Bergman spaces, Pacific J. Math. 130 (1987), no. 2, 215–221. MR 914099, DOI 10.2140/pjm.1987.130.215
- Paul S. Bourdon, Fredholm multiplication and composition operators on the Hardy space, Integral Equations Operator Theory 13 (1990), no. 4, 607–610. MR 1058089, DOI 10.1007/BF01210404
- Guangfu Cao, Fredholm properties of Toeplitz operators on Dirichlet spaces, Pacific J. Math. 188 (1999), no. 2, 209–223. MR 1684141, DOI 10.2140/pjm.1999.188.209
- Guangfu Cao, Composition and Toeplitz operators on general domains, Tohoku Math. J. (2) 57 (2005), no. 1, 11–22. MR 2113987
- Guangfu Cao, Li He, and Kehe Zhu, Spectral theory of multiplication operators on Hardy-Sobolev spaces, J. Funct. Anal. 275 (2018), no. 5, 1259–1279. MR 3815250, DOI 10.1016/j.jfa.2018.05.017
- Guangfu Cao, Li He, and Kehe Zhu, Polynomial approximation and composition operators, Proc. Amer. Math. Soc. 149 (2021), no. 9, 3715–3724. MR 4291572, DOI 10.1090/proc/14455
- Guangfu Cao, Li He, and Kehe Zhu, Fredholm composition operators and proper holomorphic mappings, Bull. Lond. Math. Soc. 51 (2019), no. 6, 1104–1112. MR 4041015, DOI 10.1112/blms.12300
- Guangfu Cao and Shunhua Sun, On composition operators on $H^p$-spaces in several variables, Acta Math. Sinica (N.S.) 13 (1997), no. 2, 281–288. A Chinese summary appears in Acta Math. Sinica 40 (1997), no. 3, 480. MR 1481807, DOI 10.1007/BF02559966
- Joseph A. Cima, A theorem on composition operators, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976) Lecture Notes in Math., Vol. 604, Springer, Berlin-New York, 1977, pp. 21–24. MR 473903
- Joseph A. Cima, James Thomson, and Warren Wogen, On some properties of composition operators, Indiana Univ. Math. J. 24 (1974/75), 215–220. MR 350487, DOI 10.1512/iumj.1974.24.24018
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- Peter Duren and Alexander Schuster, Bergman spaces, Mathematical Surveys and Monographs, vol. 100, American Mathematical Society, Providence, RI, 2004. MR 2033762, DOI 10.1090/surv/100
- P. Galindo, T. W. Gamelin, and M. Lindström, Fredholm composition operators on algebras of analytic functions on Banach spaces, J. Funct. Anal. 258 (2010), no. 5, 1504–1512. MR 2566310, DOI 10.1016/j.jfa.2009.10.020
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Ashok Kumar, Fredholm composition operators, Proc. Amer. Math. Soc. 79 (1980), no. 2, 233–236. MR 565345, DOI 10.1090/S0002-9939-1980-0565345-0
- Barbara D. MacCluer, Fredholm composition operators, Proc. Amer. Math. Soc. 125 (1997), no. 1, 163–166. MR 1371134, DOI 10.1090/S0002-9939-97-03743-X
- S. N. Mergeljan and A. P. Talmadjan, On completeness in a class of non-Jordan regions, Amer. Math. Soc. Transl. 35 (1964), 79–94; Izv. Akad. Nauk Armjan. SSR, 7 (1954), 1–17.
- Osamu Hatori, Fredholm composition operators on spaces of holomorphic functions, Integral Equations Operator Theory 18 (1994), no. 2, 202–210. MR 1256096, DOI 10.1007/BF01192459
- J. S. Manhas and R. Zhao, Fredholm and Frame-Preserving weighted composition operators, Preprint.
- Joaquín Ortega and Joan Fàbrega, Multipliers in Hardy-Sobolev spaces, Integral Equations Operator Theory 55 (2006), no. 4, 535–560. MR 2250162, DOI 10.1007/s00020-005-1403-3
- Jordi Pau and Patricio A. Pérez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl. 401 (2013), no. 2, 682–694. MR 3018017, DOI 10.1016/j.jmaa.2012.12.052
- Raymond C. Roan, Composition operators on $H^{p}$ with dense range, Indiana Univ. Math. J. 27 (1978), no. 1, 159–162. MR 473905, DOI 10.1512/iumj.1978.27.27013
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften, vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
- Donald Sarason, Weak-star generators of $H^{\infty }$, Pacific J. Math. 17 (1966), 519–528. MR 211269, DOI 10.2140/pjm.1966.17.519
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, RI, 1974, pp. 49–128. MR 361899
- Ruhan Zhao and Kehe Zhu, Theory of Bergman spaces in the unit ball of $\Bbb C^n$, Mém. Soc. Math. Fr. (N.S.) 115 (2008), vi+103 pp. (2009) (English, with English and French summaries). MR 2537698
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
- K. H. Zhu, Ten Problems, A Talk at a Meeting on Operator Theory in Jiaxin, China.
- Nina Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc. 126 (1998), no. 7, 2013–2023. MR 1443862, DOI 10.1090/S0002-9939-98-04266-X
- Nina Zorboska, Composition operators with closed range, Trans. Amer. Math. Soc. 344 (1994), no. 2, 791–801. MR 1236226, DOI 10.1090/S0002-9947-1994-1236226-9
Bibliographic Information
- Li He
- Affiliation: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, People’s Republic of China
- MR Author ID: 1010577
- ORCID: 0000-0002-2920-9823
- Email: helichangsha1986@163.com
- Received by editor(s): September 16, 2022
- Received by editor(s) in revised form: October 13, 2022
- Published electronically: May 12, 2023
- Additional Notes: The author was supported by NNSF of China (Grant No. 11871170).
- Communicated by: Javad Mashreghi
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3457-3468
- MSC (2020): Primary 47B33, 47A53
- DOI: https://doi.org/10.1090/proc/16319
- MathSciNet review: 4591779