Linear $q$-difference, difference and differential operators preserving some $\mathcal {A}$-entire functions
HTML articles powered by AMS MathViewer
- by Jiaxing Huang and Tuen-Wai Ng;
- Proc. Amer. Math. Soc. 151 (2023), 3469-3479
- DOI: https://doi.org/10.1090/proc/16321
- Published electronically: April 20, 2023
- HTML | PDF | Request permission
Abstract:
We apply Rossi’s half-plane version of Borel’s theorem to study the zero distribution of linear combinations of $\mathcal {A}$-entire functions (Theorem 1.2). This provides a unified way to study linear $q$-difference, difference and differential operators (with entire coefficients) preserving subsets of $\mathcal {A}$-entire functions, and hence obtain several analogous results for the Hermite-Poulain theorem to linear finite ($q$-)difference operators with polynomial coefficients. The method also produces a result on the existence of infinitely many non-real zeros of some differential polynomials of functions in certain sub-classes of $\mathcal {A}$-entire functions.References
- Carlos Berenstein, Der-Chen Chang, and Bao Qin Li, A note on Wronskians and linear dependence of entire functions in $\textbf {C}^n$, Complex Variables Theory Appl. 24 (1994), no. 1-2, 131–144. MR 1269838, DOI 10.1080/17476939408814706
- W. Bergweiler, A. Eremenko, and J. K. Langley, Real entire functions of infinite order and a conjecture of Wiman, Geom. Funct. Anal. 13 (2003), no. 5, 975–991. MR 2024413, DOI 10.1007/s00039-003-0437-4
- W. Bergweiler, A. Eremenko, and J. K. Langley, Zeros of differential polynomials in real meromorphic functions, Proc. Edinburgh Math. Soc. 48 (2005), 279–293.
- W. Bergweiler and W. H. J. Fuchs, On the zeros of the second derivative of real entire functions, J. Anal. 1 (1993), 73–79. MR 1230507
- Walter Bergweiler, Katsuya Ishizaki, and Niro Yanagihara, Meromorphic solutions of some functional equations, Methods Appl. Anal. 5 (1998), no. 3, 248–258. MR 1659151, DOI 10.4310/MAA.1998.v5.n3.a2
- Julius Borcea and Petter Brändén, Pólya-Schur master theorems for circular domains and their boundaries, Ann. of Math. (2) 170 (2009), no. 1, 465–492. MR 2521123, DOI 10.4007/annals.2009.170.465
- E. Borel, Lecons sur les fonctions entieres, Gauthier-Villars, Paris, 1921.
- Petter Brändén, Ilia Krasikov, and Boris Shapiro, Elements of Pólya-Schur theory in the finite difference setting, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4831–4843. MR 3544533, DOI 10.1090/proc/13115
- David A. Brannan and James G. Clunie (eds.), Aspects of contemporary complex analysis, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 623462
- Yik-Man Chiang and Shao-Ji Feng, On the Nevanlinna characteristic of $f(z+\eta )$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105–129. MR 2407244, DOI 10.1007/s11139-007-9101-1
- George Csordas and Richard S. Varga, Integral transforms and the Laguerre-Pólya class, Complex Variables Theory Appl. 12 (1989), no. 1-4, 211–230. MR 1040921, DOI 10.1080/17476938908814366
- G. Csordas and R. S. Varga, Problems and theorems in the theory of multiplier sequences, Serdica Math J 22 (1996), no. 4, 515–524.
- N. G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197–226. MR 37351, DOI 10.1215/S0012-7094-50-01720-0
- Alexandre Eremenko and L. A. Rubel, On the zero sets of certain entire functions, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2401–2404. MR 1322920, DOI 10.1090/S0002-9939-96-03294-7
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 164038
- Simon Hellerstein and Jack Williamson, Derivatives of entire functions and a question of Pólya, Trans. Amer. Math. Soc. 227 (1977), 227–249. MR 435393, DOI 10.1090/S0002-9947-1977-0435393-4
- Jiaxing Huang and Tuen-Wai Ng, Hypertranscendency of perturbations of hypertranscendental functions, J. Math. Anal. Appl. 491 (2020), no. 2, 124390, 11. MR 4126404, DOI 10.1016/j.jmaa.2020.124390
- Olga Katkova, Mikhail Tyaglov, and Anna Vishnyakova, Linear finite difference operators preserving the Laguerre-Pólya class, Complex Var. Elliptic Equ. 63 (2018), no. 11, 1604–1619. MR 3847101, DOI 10.1080/17476933.2017.1400539
- Olga Katkova, Mikhail Tyaglov, and Anna Vishnyakova, Hermite-Poulain theorems for linear finite difference operators, Constr. Approx. 52 (2020), no. 3, 357–393. MR 4181781, DOI 10.1007/s00365-020-09507-0
- Ilpo Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. MR 1207139, DOI 10.1515/9783110863147
- J. K. Langley, Non-real zeros of linear differential polynomials, J. Anal. Math. 107 (2009), 107–140. MR 2496401, DOI 10.1007/s11854-009-0005-4
- J. K. Langley, Postgraduate notes on complex analysis, http://www.maths.nottingham.ac.uk/personal/jkl/pgl.pdf, 2014.
- B. Ja. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, RI, 1964. MR 156975, DOI 10.1090/mmono/005
- B. Ja. Levin and I. V. Ostrovskiĭ, The dependence of the growth of an entire function on the distribution of zeros of its derivatives, Sibirsk. Mat. Ž. 1 (1960), 427–455 (Russian). MR 130979
- Rolf Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Chelsea Publishing Co., New York, 1974 (French). Reprinting of the 1929 original. MR 417418
- Tuen-Wai Ng and Chung-Chun Yang, On the zeros of $\sum a_i\exp g_i$, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 7, 137–139. MR 1487577
- Nikola Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963 (German). MR 164003
- G. Pólya, Über Annäherung durch polynome mit lauter reellen Wurzeln, Rend. Circ. Mat. Palermo 36 (1913), 279–295.
- G. Pólya, Bemerkung Über die Integraldarstellung der Riemannschen $\xi$-Funktion, Acta Math. 48 (1926), no. 3-4, 305–317 (German). MR 1555227, DOI 10.1007/BF02565336
- J. Schur and G. Pólya, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. Reine Angew. Math. 144 (1914), 89–113 (German). MR 1580897, DOI 10.1515/crll.1914.144.89
- Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
- John Rossi, A half-plane version of a theorem of Borel, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 111–118. MR 955813, DOI 10.1007/978-1-4613-9602-4_{9}
- T. Sheil-Small, On the zeros of the derivatives of real entire functions and Wiman’s conjecture, Ann. of Math. (2) 129 (1989), no. 1, 179–193. MR 979605, DOI 10.2307/1971490
- Masatsugu Tsuji, On Borel’s directions of meromorphic functions of finite order. I, Tohoku Math. J. (2) 2 (1950), 97–112. MR 41224, DOI 10.2748/tmj/1178245639
- Peter Walker, Separation of zeros of translates of polynomials and entire functions, J. Math. Anal. Appl. 206 (1997), no. 1, 270–279. MR 1429291, DOI 10.1006/jmaa.1997.5232
Bibliographic Information
- Jiaxing Huang
- Affiliation: College of Mathematics and Statistics, Shenzhen University, Shenzhen, People’s Republic of China
- MR Author ID: 1393525
- ORCID: 0000-0001-7264-6650
- Email: hjxmath@szu.edu.cn
- Tuen-Wai Ng
- Affiliation: Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
- MR Author ID: 621261
- ORCID: 0000-0002-3985-5132
- Email: ntw@maths.hku.hk
- Received by editor(s): September 21, 2021
- Received by editor(s) in revised form: October 17, 2022
- Published electronically: April 20, 2023
- Additional Notes: The first author was partially supported by a graduate studentship of HKU, the RGC Grant 1731115 and the NSF of China (No. 12201420 and 12231013).
The second author was partially supported by the RGC Grant 1731115 and 17307420. - Communicated by: Javad Mashreghi
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3469-3479
- MSC (2020): Primary 30C15; Secondary 30D35, 30D20
- DOI: https://doi.org/10.1090/proc/16321
- MathSciNet review: 4591780