Generalizations of mock theta functions and radial limits
HTML articles powered by AMS MathViewer
- by Su-Ping Cui, Nancy S. S. Gu and Chen-Yang Su;
- Proc. Amer. Math. Soc. 151 (2023), 3317-3329
- DOI: https://doi.org/10.1090/proc/16368
- Published electronically: April 28, 2023
- HTML | PDF | Request permission
Abstract:
In the last letter to Hardy, Ramanujan [Collected Papers, Cambridge Univ. Press, 1927; Reprinted, Chelsea, New York, 1962] introduced seventeen functions defined by $q$-series convergent for $|q|<1$ with a complex variable $q$, and called these functions “mock theta functions”. Subsequently, mock theta functions were widely studied in the literature. In the survey of B. Gordon and R. J. McIntosh [A survey of classical mock theta functions, Partitions, $q$-series, and modular forms, Dev. Math., vol. 23, Springer, New York, 2012, pp. 95–144], they showed that the odd (resp. even) order mock theta functions are related to the function $g_3(x,q)$ (resp. $g_2(x,q)$). These two functions are usually called “universal mock theta functions”. D. R. Hickerson and E. T. Mortenson [Proc. Lond. Math. Soc. (3) 109 (2014), pp. 382–422] expressed all the classical mock theta functions and the two universal mock theta functions in terms of Appell–Lerch sums. In this paper, based on some $q$-series identities, we find four functions, and express them in terms of Appell–Lerch sums. For example, \begin{equation*} 1+(xq^{-1}-x^{-1}q)\sum _{n=0}^{\infty }\frac {(-1;q)_{2n}q^{n}}{(xq^{-1},x^{-1}q;q^2)_{n+1}}=2m(x,q^2,q). \end{equation*} Then we establish some identities related to these functions and the universal mock theta function $g_2(x,q)$. These relations imply that all the classical mock theta functions can be expressed in terms of these four functions. Furthermore, by means of $q$-series identities and some properties of Appell–Lerch sums, we derive four radial limit results related to these functions.References
- George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc. 293 (1986), no. 1, 113–134. MR 814916, DOI 10.1090/S0002-9947-1986-0814916-2
- George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part I, Springer, New York, 2005. MR 2135178, DOI 10.1007/0-387-28124-X
- George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part V, Springer, Cham, 2018. MR 3838409, DOI 10.1007/978-3-319-77834-1
- J. Bajpai, S. Kimport, J. Liang, D. Ma, and J. Ricci, Bilateral series and Ramanujan’s radial limits, Proc. Amer. Math. Soc. 143 (2015), no. 2, 479–492. MR 3283638, DOI 10.1090/S0002-9939-2014-12249-0
- Alexander Berkovich and Frank G. Garvan, Some observations on Dyson’s new symmetries of partitions, J. Combin. Theory Ser. A 100 (2002), no. 1, 61–93. MR 1932070, DOI 10.1006/jcta.2002.3281
- Kathrin Bringmann, Amanda Folsom, and Robert C. Rhoades, Partial theta functions and mock modular forms as $q$-hypergeometric series, Ramanujan J. 29 (2012), no. 1-3, 295–310. MR 2994103, DOI 10.1007/s11139-012-9370-1
- Kathrin Bringmann and Larry Rolen, Radial limits of mock theta functions, Res. Math. Sci. 2 (2015), Art. 17, 18. MR 3392042, DOI 10.1186/s40687-015-0035-8
- Greg Carroll, James Corbett, Amanda Folsom, and Ellie Thieu, Universal mock theta functions as quantum Jacobi forms, Res. Math. Sci. 6 (2019), no. 1, Paper No. 6, 15. MR 3880344, DOI 10.1007/s40687-018-0169-6
- F. J. Dyson, Some guesses in the theory of partitions, Eureka 8 (1944), 10–15. MR 3077150
- Amanda Folsom, Ken Ono, and Robert C. Rhoades, Mock theta functions and quantum modular forms, Forum Math. Pi 1 (2013), e2, 27. MR 3141412, DOI 10.1017/fmp.2013.3
- Amanda Folsom, Ken Ono, and Robert C. Rhoades, Ramanujan’s radial limits, Ramanujan 125, Contemp. Math., vol. 627, Amer. Math. Soc., Providence, RI, 2014, pp. 91–102. MR 3307493, DOI 10.1090/conm/627/12534
- F. G. Garvan, Universal mock theta functions and two-variable Hecke-Rogers identities, Ramanujan J. 36 (2015), no. 1-2, 267–296. MR 3296723, DOI 10.1007/s11139-014-9624-1
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251
- Basil Gordon and Richard J. McIntosh, A survey of classical mock theta functions, Partitions, $q$-series, and modular forms, Dev. Math., vol. 23, Springer, New York, 2012, pp. 95–144. MR 3051186, DOI 10.1007/978-1-4614-0028-8_{9}
- Nancy S. S. Gu and Jing Liu, Families of multisums as mock theta functions, Adv. in Appl. Math. 79 (2016), 98–124. MR 3505222, DOI 10.1016/j.aam.2016.04.003
- Dean Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988), no. 3, 639–660. MR 969247, DOI 10.1007/BF01394279
- Dean R. Hickerson and Eric T. Mortenson, Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I, Proc. Lond. Math. Soc. (3) 109 (2014), no. 2, 382–422. MR 3254929, DOI 10.1112/plms/pdu007
- Min-Joo Jang and Steffen Löbrich, Radial limits of the universal mock theta function $g_3$, Proc. Amer. Math. Soc. 145 (2017), no. 3, 925–935. MR 3589294, DOI 10.1090/proc/13065
- Soon-Yi Kang, Mock Jacobi forms in basic hypergeometric series, Compos. Math. 145 (2009), no. 3, 553–565. MR 2507741, DOI 10.1112/S0010437X09004060
- M. Lerch, Poznámky $k$ theorii funkcí elliptických, Rozpravy České Akademie Císaře Františka Josefa pro vědy, slovesnost a umění v praze, 24 (1892), 465–480.
- M. Lerch, Nová analogie řady theta a některé zvláštní hypergeometrické řady Heineovy, Rozpravy, 3 (1893), 1–10.
- Zhi-Guo Liu, Some operator identities and $q$-series transformation formulas, Discrete Math. 265 (2003), no. 1-3, 119–139. MR 1969370, DOI 10.1016/S0012-365X(02)00626-X
- Jeremy Lovejoy, Rank and conjugation for the Frobenius representation of an overpartition, Ann. Comb. 9 (2005), no. 3, 321–334. MR 2176595, DOI 10.1007/s00026-005-0260-8
- Jeremy Lovejoy, Bailey pairs and indefinite quadratic forms, J. Math. Anal. Appl. 410 (2014), no. 2, 1002–1013. MR 3111885, DOI 10.1016/j.jmaa.2013.09.009
- Jeremy Lovejoy and Robert Osburn, $M_2$-rank differences for partitions without repeated odd parts, J. Théor. Nombres Bordeaux 21 (2009), no. 2, 313–334 (English, with English and French summaries). MR 2541428, DOI 10.5802/jtnb.673
- Jeremy Lovejoy and Robert Osburn, The Bailey chain and mock theta functions, Adv. Math. 238 (2013), 442–458. MR 3033639, DOI 10.1016/j.aim.2013.02.005
- Jeremy Lovejoy and Robert Osburn, $q$-hypergeometric double sums as mock theta functions, Pacific J. Math. 264 (2013), no. 1, 151–162. MR 3079764, DOI 10.2140/pjm.2013.264.151
- Richard J. McIntosh, The $H$ and $K$ family of mock theta functions, Canad. J. Math. 64 (2012), no. 4, 935–960. MR 2957237, DOI 10.4153/CJM-2011-066-0
- Richard J. McIntosh, Some identities for Appell-Lerch sums and a universal mock theta function, Ramanujan J. 45 (2018), no. 3, 767–779. MR 3776436, DOI 10.1007/s11139-016-9869-y
- Eric T. Mortenson, On the dual nature of partial theta functions and Appell-Lerch sums, Adv. Math. 264 (2014), 236–260. MR 3250284, DOI 10.1016/j.aim.2014.07.018
- Eric Mortenson, Ramanujan’s radial limits and mixed mock modular bilateral $q$-hypergeometric series, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 3, 787–799. MR 3572771, DOI 10.1017/S0013091515000425
- S. Ramanujan, Collected Papers, Cambridge Univ. Press, 1927; Reprinted, Chelsea, New York, 1962.
- Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735
- G. N. Watson, The Final Problem : An Account of the Mock Theta Functions, J. London Math. Soc. 11 (1936), no. 1, 55–80. MR 1573993, DOI 10.1112/jlms/s1-11.1.55
- G. N. Watson, The Mock Theta Functions (2), Proc. London Math. Soc. (2) 42 (1936), no. 4, 274–304. MR 1577032, DOI 10.1112/plms/s2-42.1.274
- Wadim Zudilin, On three theorems of Folsom, Ono and Rhoades, Proc. Amer. Math. Soc. 143 (2015), no. 4, 1471–1476. MR 3314062, DOI 10.1090/S0002-9939-2014-12364-1
Bibliographic Information
- Su-Ping Cui
- Affiliation: School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, People’s Republic of China; and Academy of Plateau Science and Sustainability, Xining, Qinghai 810008, People’s Republic of China
- Email: jiayoucui@163.com
- Nancy S. S. Gu
- Affiliation: Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, People’s Republic of China
- ORCID: 0000-0002-7519-5733
- Email: gu@nankai.edu.cn
- Chen-Yang Su
- Affiliation: College of Mathematical Science, Tianjin Normal University, Tianjin 300387, People’s Republic of China
- ORCID: 0000-0003-0818-461X
- Email: cyangsu@163.com
- Received by editor(s): July 29, 2022
- Received by editor(s) in revised form: November 29, 2022
- Published electronically: April 28, 2023
- Additional Notes: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12171255, 12001309, and 12171362) and the Natural Science Foundation Youth Fund of Qinghai (Grant No. 2022-ZJ-972Q).
The second author is the corresponding author - Communicated by: Mourad Ismail
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3317-3329
- MSC (2020): Primary 11B65, 11F27
- DOI: https://doi.org/10.1090/proc/16368
- MathSciNet review: 4591769