Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the solution of Waring problem with a multiplicative error term: Dimension-free estimates
HTML articles powered by AMS MathViewer

by Jarosław Mirek, Wojciech Słomian and Błażej Wróbel;
Proc. Amer. Math. Soc. 151 (2023), 3365-3379
DOI: https://doi.org/10.1090/proc/16427
Published electronically: May 12, 2023

Abstract:

We give a relation between the radius and the dimension in which the asymptotic formula in the Waring problem holds in a multiplicative and dimension-free fashion.
References
  • Jean Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5–45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. MR 1019960, DOI 10.1007/BF02698838
  • Zh. Burgeĭn, On the Vinogradov integral, Tr. Mat. Inst. Steklova 296 (2017), no. Analiticheskaya i Kombinatornaya Teoriya Chisel, 36–46 (Russian, with Russian summary). English version published in Proc. Steklov Inst. Math. 296 (2017), no. 1, 30–40. MR 3640771, DOI 10.1134/S0371968517010034
  • Jean Bourgain, Mariusz Mirek, Elias M. Stein, and Błażej Wróbel, On the Hardy-Littlewood maximal functions in high dimensions: continuous and discrete perspective, Geometric aspects of harmonic analysis, Springer INdAM Ser., vol. 45, Springer, Cham, [2021] ©2021, pp. 107–148. MR 4390223, DOI 10.1007/978-3-030-72058-2_{3}
  • H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2005. With a foreword by R. C. Vaughan, D. R. Heath-Brown and D. E. Freeman; Edited and prepared for publication by T. D. Browning. MR 2152164, DOI 10.1017/CBO9780511542893
  • G. H. Hardy and S. Ramanujan, Asymptotic Formulaae in Combinatory Analysis, Proc. London Math. Soc. (2) 17 (1918), 75–115. MR 1575586, DOI 10.1112/plms/s2-17.1.75
  • G. H. Hardy and J. E. Littlewood, Some problems of "Partitio Numerorum": I. A new solution of Waring’s problem, Göttingen Nach. (1920), 33–54.
  • David Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n^{ter}$ Potenzen (Waringsches Problem), Math. Ann. 67 (1909), no. 3, 281–300 (German). MR 1511530, DOI 10.1007/BF01450405
  • Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
  • D. Kosz, M. Mirek, P. Plewa, and B. Wróbel, Some remarks on dimension-free estimates for the discrete Hardy-Littlewood maximal functions, Israel J. Math. (2022), DOI 10.1007/s11856-022-2382-7.
  • Akos Magyar, Diophantine equations and ergodic theorems, Amer. J. Math. 124 (2002), no. 5, 921–953. MR 1925339, DOI 10.1353/ajm.2002.0029
  • M. Mirek, T. Szarek, and B. Wróbel, Dimension-free estimates for the discrete spherical maximal functions, Int. Math. Res. Not. IMRN (2023), Accepted, DOI 10.1093/imrn/rnac329.
  • Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 164, Springer-Verlag, New York, 1996. The classical bases. MR 1395371, DOI 10.1007/978-1-4757-3845-2
  • R. C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge-New York, 1981. MR 628618
  • Robert C. Vaughan and Trevor D. Wooley, The asymptotic formula in Waring’s problem: higher order expansions, J. Reine Angew. Math. 742 (2018), 17–46. MR 3849621, DOI 10.1515/crelle-2015-0098
  • I. M. Vinogradov, On Waring’s theorem, lzv. Akad. Nauk SSSR, Old. Fiz.-Mat. Nauk 4 (1928), 393–400. English translation in Selected Works, pp. 101–106, Springer-Verlag, Berlin, 1985.
  • Trevor D. Wooley, Large improvements in Waring’s problem, Ann. of Math. (2) 135 (1992), no. 1, 131–164. MR 1147960, DOI 10.2307/2946566
  • Trevor D. Wooley, Translation invariance, exponential sums, and Waring’s problem, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 505–529. MR 3728625
  • T. D. Wooley, Lecture notes for the course arithmetic harmonic analysis: an introduction to the circle method, https://www.math.purdue.edu/~twooley/2020aha/2020ahanotes.pdf.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2020): 11P05, 11P55
  • Retrieve articles in all journals with MSC (2020): 11P05, 11P55
Bibliographic Information
  • Jarosław Mirek
  • Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2, 50-384 Wrocław, Poland
  • MR Author ID: 1340273
  • Email: jd.mirek@gmail.com
  • Wojciech Słomian
  • Affiliation: Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
  • MR Author ID: 871997
  • ORCID: 0000-0002-5031-5559
  • Email: wojciech.slomian@pwr.edu.pl
  • Błażej Wróbel
  • Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2, 50-384 Wrocław, Poland
  • ORCID: 0000-0003-0413-8931
  • Email: blazej.wrobel@math.uni.wroc.pl
  • Received by editor(s): March 17, 2022
  • Received by editor(s) in revised form: November 4, 2022, and January 5, 2023
  • Published electronically: May 12, 2023
  • Additional Notes: The first, second and third authors were supported by the National Science Centre, Poland, grant Opus 2018/31/B/ST1/00204.
  • Communicated by: Amanda Folsom
  • © Copyright 2023 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 151 (2023), 3365-3379
  • MSC (2020): Primary 11P05, 11P55
  • DOI: https://doi.org/10.1090/proc/16427
  • MathSciNet review: 4591772