A remark on the category of graded $F$-modules
HTML articles powered by AMS MathViewer
- by McKinley Gray;
- Proc. Amer. Math. Soc. 151 (2023), 3663-3672
- DOI: https://doi.org/10.1090/proc/16147
- Published electronically: June 6, 2023
- HTML | PDF | Request permission
Abstract:
Let $R=k[x,y]$ be a polynomial ring over a field $k$ of prime characteristic $p$ and let $E$ denote the injective hull of $k$ (which is isomorphic to $H^2_{(x,y)}(R)$). We prove that $E$ is not an injective object in the category of graded $F$-modules over $R$. This answers in the negative a question raised by Lyubeznik-Singh-Walther [J. Eur. Math. Soc. (JEMS) 18 (2016), pp. 2545- 2578].References
- Robin Hartshorne and Robert Speiser, Local cohomological dimension in characteristic $p$, Ann. of Math. (2) 105 (1977), no. 1, 45–79. MR 441962, DOI 10.2307/1971025
- Craig L. Huneke and Rodney Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), no. 2, 765–779. MR 1124167, DOI 10.1090/S0002-9947-1993-1124167-6
- Matthew Emerton and Mark Kisin, The Riemann-Hilbert correspondence for unit $F$-crystals, Astérisque 293 (2004), vi+257 (English, with English and French summaries). MR 2071510
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130, DOI 10.1007/BF02685877
- Gennady Lyubeznik, $F$-modules: applications to local cohomology and $D$-modules in characteristic $p>0$, J. Reine Angew. Math. 491 (1997), 65–130. MR 1476089, DOI 10.1515/crll.1997.491.65
- Gennady Lyubeznik, Anurag K. Singh, and Uli Walther, Local cohomology modules supported at determinantal ideals, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2545–2578. MR 3562351, DOI 10.4171/JEMS/648
- Linquan Ma, The category of $F$-modules has finite global dimension, J. Algebra 402 (2014), 1–20. MR 3160413, DOI 10.1016/j.jalgebra.2013.12.008
- Wenliang Zhang, Lyubeznik numbers of projective schemes, Adv. Math. 228 (2011), no. 1, 575–616. MR 2822240, DOI 10.1016/j.aim.2011.05.020
- Yi Zhang, Graded $F$-modules and local cohomology, Bull. Lond. Math. Soc. 44 (2012), no. 4, 758–762. MR 2967243, DOI 10.1112/blms/bds008
Bibliographic Information
- McKinley Gray
- ORCID: 0000-0002-5017-6501
- Email: mgray6@uic.edu
- Received by editor(s): October 28, 2021
- Received by editor(s) in revised form: May 2, 2022
- Published electronically: June 6, 2023
- Communicated by: Claudia Polini
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3663-3672
- MSC (2020): Primary 13A35, 13C11, 13C60
- DOI: https://doi.org/10.1090/proc/16147
- MathSciNet review: 4607613