Almost all sets of nonnegative integers and their small perturbations are not sumsets
HTML articles powered by AMS MathViewer
- by Paolo Leonetti;
- Proc. Amer. Math. Soc. 151 (2023), 3681-3689
- DOI: https://doi.org/10.1090/proc/16392
- Published electronically: June 6, 2023
- HTML | PDF | Request permission
Abstract:
Fix $\alpha \in (0,1/3)$. We show that, from a topological point of view, almost all sets $A\subseteq \mathbb {N}$ have the property that, if $A^\prime =A$ for all but $o(n^{\alpha })$ elements, then $A^\prime$ is not a nontrivial sumset $B+C$. In particular, almost all $A$ are totally irreducible. In addition, we prove that the measure analogue holds with $\alpha =1$.References
- A. Aveni and P. Leonetti, Most numbers are not normal, Math. Proc. Cambridge Philos. Soc. (published electronically 2022), DOI 10.1017/S0305004122000469.
- M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), no. 1, 97–115. MR 3391516, DOI 10.1007/s10474-015-0510-0
- Marek Balcerzak and Paolo Leonetti, Convergent subseries of divergent series, Rend. Circ. Mat. Palermo (2) 71 (2022), no. 2, 879–886. MR 4453356, DOI 10.1007/s12215-021-00629-3
- P.-Y. Bienvenu, Metric decomposability theorems on sets of integers, arXiv:2204.11773, 2022.
- P.-Y. Bienvenu and A. Geroldinger, On algebraic properties of power monoids of numerical monoids, arXiv:2205.009829, 2023.
- Patrick Billingsley, Probability and measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1324786
- Christian Elsholtz, Additive decomposability of multiplicatively defined sets, Funct. Approx. Comment. Math. 35 (2006), 61–77. MR 2271607, DOI 10.7169/facm/1229442617
- Christian Elsholtz and Adam J. Harper, Additive decompositions of sets with restricted prime factors, Trans. Amer. Math. Soc. 367 (2015), no. 10, 7403–7427. MR 3378834, DOI 10.1090/S0002-9947-2014-06384-8
- Bernard Host, A short proof of a conjecture of Erdős proved by Moreira, Richter and Robertson, Discrete Anal. , posted on (2019), Paper No. 19, 10. MR 4042162, DOI 10.19086/da
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Adam Kwela, Erdős-Ulam ideals vs. simple density ideals, J. Math. Anal. Appl. 462 (2018), no. 1, 114–130. MR 3771234, DOI 10.1016/j.jmaa.2018.01.071
- Adam Kwela, MichałPopławski, Jarosław Swaczyna, and Jacek Tryba, Properties of simple density ideals, J. Math. Anal. Appl. 477 (2019), no. 1, 551–575. MR 3950052, DOI 10.1016/j.jmaa.2019.04.046
- Paolo Leonetti, Limit points of subsequences, Topology Appl. 263 (2019), 221–229. MR 3968131, DOI 10.1016/j.topol.2019.06.038
- Paolo Leonetti, Tauberian theorems for ordinary convergence, J. Math. Anal. Appl. 519 (2023), no. 2, Paper No. 126798, 10. MR 4506089, DOI 10.1016/j.jmaa.2022.126798
- Paolo Leonetti and Amir Khorrami Chokami, The maximum domain of attraction of multivariate extreme value distributions is small, Electron. Commun. Probab. 27 (2022), Paper No. 60, 8. MR 4529628, DOI 10.1214/22-ecp501
- Paolo Leonetti and Salvatore Tringali, On the notions of upper and lower density, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 1, 139–167. MR 4054777, DOI 10.1017/s0013091519000208
- Joel Moreira, Florian K. Richter, and Donald Robertson, A proof of a sumset conjecture of Erdős, Ann. of Math. (2) 189 (2019), no. 2, 605–652. MR 3919363, DOI 10.4007/annals.2019.189.2.4
- Hans-Heinrich Ostmann, Additive Zahlentheorie. Teil I: Allgemeine Untersuchungen. Teil II: Spezielle Zahlenmengen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bände 7, vol. 11, Springer-Verlag, Berlin-New York, 1968 (German). Unveränderter Nachdruck der 1; Auflage von 1956. MR 268112
- I. Z. Ruzsa, Additive decomposition of signed primes, Acta Arith. (published electronically 2023), DOI 10.4064/aa220429-17-11.
- A. Sárközi, Über totalprimitive Folgen, Acta Arith. 8 (1962/63), 21–31. MR 146164, DOI 10.4064/aa-8-1-21-31
- A. Sárközy, Some metric problems in the additive number theory. I, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 19 (1976), 107–127 (1977). MR 568278
- A. Sárközy, Some metric problems in the additive number theory. II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 20 (1977), 111–129. MR 568279
- András Sárközy and Endre Szemerédi, On the sequence of squares, Mat. Lapok 16 (1965), 76–85 (Hungarian). MR 201410
- Eduard Wirsing, Ein metrischer Satz über Mengen ganzer Zahlen, Arch. Math. (Basel) 4 (1953), 392–398 (German). MR 58655, DOI 10.1007/BF01899255
Bibliographic Information
- Paolo Leonetti
- Affiliation: Department of Economics, Università degli Studi dell’Insubria, via Monte Generoso 71, 21100 Varese, Italy
- MR Author ID: 1100670
- ORCID: 0000-0001-7819-5301
- Email: leonetti.paolo@gmail.com
- Received by editor(s): May 17, 2022
- Received by editor(s) in revised form: September 14, 2022, October 24, 2022, December 6, 2022, and December 28, 2022
- Published electronically: June 6, 2023
- Communicated by: Amanda Folsom
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3681-3689
- MSC (2020): Primary 11B13, 54E52; Secondary 11B05, 11B30
- DOI: https://doi.org/10.1090/proc/16392
- MathSciNet review: 4607615