Relative Chow stability and optimal weights
HTML articles powered by AMS MathViewer
- by Carl Tipler;
- Proc. Amer. Math. Soc. 151 (2023), 4015-4026
- DOI: https://doi.org/10.1090/proc/16426
- Published electronically: May 19, 2023
- HTML | PDF | Request permission
Abstract:
For a polarized Kähler manifold $(X,L)$, we show the equivalence between relative balanced embeddings introduced by Mabuchi and $\sigma$-balanced embeddings introduced by Sano, answering a question of Hashimoto. We give a GIT characterization of the existence of a $\sigma$-balanced embedding, and relate the optimal weight $\sigma$ to the action of $\mathrm {Aut}_0(X,L)$ on the Chow line of $(X,L)$.References
- Vestislav Apostolov and Hongnian Huang, A splitting theorem for extremal Kähler metrics, J. Geom. Anal. 25 (2015), no. 1, 149–170. MR 3299273, DOI 10.1007/s12220-013-9417-6
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 259–290. MR 645743
- Alberto Della Vedova and Fabio Zuddas, Scalar curvature and asymptotic Chow stability of projective bundles and blowups, Trans. Amer. Math. Soc. 364 (2012), no. 12, 6495–6511. MR 2958945, DOI 10.1090/S0002-9947-2012-05587-5
- S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479–522. MR 1916953, DOI 10.4310/jdg/1090349449
- S. K. Donaldson, Scalar curvature and projective embeddings. II, Q. J. Math. 56 (2005), no. 3, 345–356. MR 2161248, DOI 10.1093/qmath/hah044
- Akito Futaki, Asymptotic Chow semi-stability and integral invariants, Internat. J. Math. 15 (2004), no. 9, 967–979. MR 2106156, DOI 10.1142/S0129167X04002612
- Yoshinori Hashimoto, Quantisation of extremal Kähler metrics, J. Geom. Anal. 31 (2021), no. 3, 2970–3028. MR 4225832, DOI 10.1007/s12220-020-00381-7
- Yoshinori Hashimoto, Relative stability associated to quantised extremal Kähler metrics, J. Math. Soc. Japan 71 (2019), no. 3, 861–880. MR 3984245, DOI 10.2969/jmsj/79947994
- Shoshichi Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 70, Springer-Verlag, New York-Heidelberg, 1972. MR 355886, DOI 10.1007/978-3-642-61981-6
- Mehdi Lejmi, Extremal almost-Kähler metrics, Internat. J. Math. 21 (2010), no. 12, 1639–1662. MR 2747965, DOI 10.1142/S0129167X10006690
- Chi Li, Constant scalar curvature Kähler metric obtains the minimum of K-energy, Int. Math. Res. Not. IMRN 9 (2011), 2161–2175. MR 2806561, DOI 10.1093/imrn/rnq152
- Huazhang Luo, Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998), no. 3, 577–599. MR 1669716
- Toshiki Mabuchi, Stability of extremal Kähler manifolds, Osaka J. Math. 41 (2004), no. 3, 563–582. MR 2107663
- Toshiki Mabuchi, An obstruction to asymptotic semistability and approximate critical metrics, Osaka J. Math. 41 (2004), no. 2, 463–472. MR 2069096
- Toshiki Mabuchi, Uniqueness of extremal Kähler metrics for an integral Kähler class, Internat. J. Math. 15 (2004), no. 6, 531–546. MR 2078878, DOI 10.1142/S0129167X04002429
- Toshiki Mabuchi, An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I, Invent. Math. 159 (2005), no. 2, 225–243. MR 2116275, DOI 10.1007/s00222-004-0387-y
- Hajime Ono, Yuji Sano, and Naoto Yotsutani, An example of an asymptotically Chow unstable manifold with constant scalar curvature, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 4, 1265–1287 (English, with English and French summaries). MR 3025743, DOI 10.5802/aif.2722
- Sean Timothy Paul, Geometric analysis of Chow Mumford stability, Adv. Math. 182 (2004), no. 2, 333–356. MR 2032032, DOI 10.1016/S0001-8708(03)00081-1
- D. H. Phong and Jacob Sturm, Stability, energy functionals, and Kähler-Einstein metrics, Comm. Anal. Geom. 11 (2003), no. 3, 565–597. MR 2015757, DOI 10.4310/CAG.2003.v11.n3.a6
- D. H. Phong and Jacob Sturm, Scalar curvature, moment maps, and the Deligne pairing, Amer. J. Math. 126 (2004), no. 3, 693–712. MR 2058389, DOI 10.1353/ajm.2004.0019
- Y. Sano, Lecture on $\sigma$-balanced metrics, 2011 Complex Geometry and Symplectic Geometry Conference, University of Science and Technology in China.
- Yuji Sano and Carl Tipler, Extremal metrics and lower bound of the modified K-energy, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 9, 2289–2310. MR 3420508, DOI 10.4171/JEMS/557
- Yuji Sano and Carl Tipler, A moment map picture of relative balanced metrics on extremal Kähler manifolds, J. Geom. Anal. 31 (2021), no. 6, 5941–5973. MR 4267632, DOI 10.1007/s12220-020-00510-2
- Reza Seyyedali, Relative Chow stability and extremal metrics, Adv. Math. 316 (2017), 770–805. MR 3672920, DOI 10.1016/j.aim.2017.06.031
- Gábor Székelyhidi, Extremal metrics and $K$-stability, Bull. Lond. Math. Soc. 39 (2007), no. 1, 76–84. MR 2303522, DOI 10.1112/blms/bdl015
- Xiaowei Wang, Moment map, Futaki invariant and stability of projective manifolds, Comm. Anal. Geom. 12 (2004), no. 5, 1009–1037. MR 2103309, DOI 10.4310/CAG.2004.v12.n5.a2
- Shouwu Zhang, Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), no. 1, 77–105. MR 1420712
Bibliographic Information
- Carl Tipler
- Affiliation: Univ Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, France
- MR Author ID: 1006281
- Email: carl.tipler@univ-brest.fr
- Received by editor(s): November 17, 2022
- Received by editor(s) in revised form: January 16, 2023
- Published electronically: May 19, 2023
- Additional Notes: The author was supported by the French government “Investissements d’Avenir” program ANR–11–LABX–0020–01, and ANR project EMARKS No ANR–14–CE25–0010.
- Communicated by: Jiaping Wang
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4015-4026
- MSC (2020): Primary 53D50, 53D20, 32Q15, 14L24
- DOI: https://doi.org/10.1090/proc/16426
- MathSciNet review: 4607644