Cesàro exponents of mixed norm spaces
HTML articles powered by AMS MathViewer
- by Bonan Chen, Guozheng Cheng, Xiang Fang, Chao Liu and Tao Yu;
- Proc. Amer. Math. Soc. 151 (2023), 3935-3948
- DOI: https://doi.org/10.1090/proc/16441
- Published electronically: May 25, 2023
- HTML | PDF | Request permission
Abstract:
In 1934, G. H. Hardy and J. E. Littlewood calculated [Proc. London Math. Soc. (2) 36 (1934), pp. 516–531] the optimal Cesàro exponent for Hardy spaces. In this paper we calculate it for mixed norm spaces, hence including the Bergman spaces in particular. The main technical challenge lies in the analysis of the example needed for the critical case.References
- Tanausú Aguilar-Hernández, Manuel D. Contreras, and Luis Rodríguez-Piazza, Average radial integrability spaces of analytic functions, J. Funct. Anal. 282 (2022), no. 1, Paper No. 109262, 34. MR 4324289, DOI 10.1016/j.jfa.2021.109262
- Karen Avetisyan, A note on mixed norm spaces of analytic functions, Aust. J. Math. Anal. Appl. 9 (2012), no. 1, Art. 16, 6. MR 2923207
- Oscar Blasco and Georgios Stylogiannis, Lipschitz-type conditions on homogeneous Banach spaces of analytic functions, J. Math. Anal. Appl. 445 (2017), no. 1, 612–630. MR 3543785, DOI 10.1016/j.jmaa.2016.08.003
- J. Bourgain, On the radial variation of bounded analytic functions on the disc, Duke Math. J. 69 (1993), no. 3, 671–682. MR 1208816, DOI 10.1215/S0012-7094-93-06928-1
- Leonardo Colzani, Cesàro means of power series, Boll. Un. Mat. Ital. A (6) 3 (1984), no. 1, 147–149 (English, with Italian summary). MR 739202
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 268655
- A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956. MR 78494
- T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. (3) 7 (1957), 113–141. MR 86912, DOI 10.1112/plms/s3-7.1.113
- T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (3) (1972), pp. 746–765.
- T. M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125–158. MR 313779, DOI 10.1016/0022-247X(72)90230-2
- A. E. Gwilliam, Cesaro Means of Power Series (2), Proc. London Math. Soc. (2) 40 (1935), no. 5, 345–352. MR 1575827, DOI 10.1112/plms/s2-40.1.345
- G. H. Hardy and J. E. Littlewood, Some new properties of fourier constants, Math. Ann. 97 (1927), no. 1, 159–209. MR 1512359, DOI 10.1007/BF01447865
- G. H. Hardy and J. E. Littlewood, Theorems Concerning Cesaro Means of Power Series, Proc. London Math. Soc. (2) 36 (1934), 516–531. MR 1575973, DOI 10.1112/plms/s2-36.1.516
- Miroljub Jevtić, Dragan Vukotić, and Miloš Arsenović, Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces, RSME Springer Series, vol. 2, Springer, Cham, 2016. MR 3587910, DOI 10.1007/978-3-319-45644-7
- Daniel Li and Hervé Queffélec, Introduction to Banach spaces: analysis and probability. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 166, Cambridge University Press, Cambridge, 2018. Translated from the French by Danièle Gibbons and Greg Gibbons; For the French original see [ MR2124356]. MR 3729312
- Javad Mashreghi, Pierre-Olivier Parisé, and Thomas Ransford, Cesàro summability of Taylor series in weighted Dirichlet spaces, Complex Anal. Oper. Theory 15 (2021), no. 1, Paper No. 7, 8. MR 4179962, DOI 10.1007/s11785-020-01058-3
- P. Oswald, On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc, Czechoslovak Math. J. 33(108) (1983), no. 3, 408–426. MR 718924, DOI 10.21136/CMJ.1983.101891
- Miroslav Pavlović, On Cesaro means in Hardy spaces, Publ. Inst. Math. (Beograd) (N.S.) 60(74) (1996), 81–87. MR 1428895
- Miroslav Pavlović, Function classes on the unit disc—an introduction, De Gruyter Studies in Mathematics, vol. 52, De Gruyter, Berlin, [2019] ©2019. 2nd edition [of 3154590]. MR 4321142, DOI 10.1515/9783110630855
- S. G. Pribegin, Boundedness of Cesàro mean values for functions from a Hardy space in a polydisc, Russian Math. (Iz. VUZ) 59 (2015), no. 4, 46–49. Translation of Izv. Vyssh. Uchebn. Zaved. Mat. 2015, no. 4, 55–59. MR 3374348, DOI 10.3103/S1066369X15040064
- Walter Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235–242. MR 79093
- Elias M. Stein, A maximal function with applications to Fourier series, Ann. of Math. (2) 68 (1958), 584–603. MR 100197, DOI 10.2307/1970157
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- È. A. Storoženko, Approximation of functions of class $H^{p}$, $0<p\leq 1$, Mat. Sb. 105(147) (1978), no. 4, 601–621, 640 (Russian). MR 496597
- Gen-ichirô Sunouchi, On the summability of power series and Fourier series, Tohoku Math. J. (2) 7 (1955), 96–109. MR 72980, DOI 10.2748/tmj/1178245107
- T. Tao, Harmonic analysis, Lecture notes at UCLA, Princeton University Press, Princeton, NJ, 1993.
- Ke He Zhu, Duality of Bloch spaces and norm convergence of Taylor series, Michigan Math. J. 38 (1991), no. 1, 89–101. MR 1091512, DOI 10.1307/mmj/1029004264
- A. Zygmund, On the convergence and summability of power series on the circle of convergence. II, Proc. London Math. Soc. (2) 47 (1942), 326–350. MR 7042, DOI 10.1112/plms/s2-47.1.326
- A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204. MR 9966, DOI 10.1090/S0002-9947-1944-0009966-5
- A. Zygmund, Trigonometric series. Vol. I, II, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002. With a foreword by Robert A. Fefferman. MR 1963498
Bibliographic Information
- Bonan Chen
- Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
- Email: chenbonan@mail.dlut.edu.cn
- Guozheng Cheng
- Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
- MR Author ID: 795828
- Email: gzhcheng@dlut.edu.cn
- Xiang Fang
- Affiliation: Department of Mathematics, National Central University, Chungli, Taiwan
- MR Author ID: 711208
- ORCID: 0000-0001-9949-7552
- Email: xfang@math.ncu.edu.tw
- Chao Liu
- Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
- Email: 2020024050@dlut.edu.cn
- Tao Yu
- Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
- ORCID: 0000-0001-7144-5670
- Email: tyu@dlut.edu.cn
- Received by editor(s): November 4, 2022
- Received by editor(s) in revised form: January 25, 2023, and February 7, 2023
- Published electronically: May 25, 2023
- Additional Notes: The second author was supported by NSFC (11871482, 12171075). The third author was supported by MOST of Taiwan (108-2628-M-008-003-MY4). The fourth author was supported by NSFC (12101103). The fifth author was supported by NSFC (11971087).
The fourth author is the corresponding author - Communicated by: Adrian Ioana
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 3935-3948
- MSC (2020): Primary 42A24, 30H20
- DOI: https://doi.org/10.1090/proc/16441
- MathSciNet review: 4607637