A note on numerical radius attaining mappings
HTML articles powered by AMS MathViewer
- by Mingu Jung;
- Proc. Amer. Math. Soc. 151 (2023), 4419-4434
- DOI: https://doi.org/10.1090/proc/16457
- Published electronically: May 12, 2023
- HTML | PDF | Request permission
Abstract:
We prove that if every bounded linear operator (or $N$-homogeneous polynomials) on a Banach space $X$ with the compact approximation property attains its numerical radius, then $X$ is a finite dimensional space. Moreover, we present an improvement of the polynomial James’ theorem for numerical radius proved by Acosta, Becerra Guerrero and Galán [Q. J. Math. 54 (2003), pp. 1–10]. Finally, the denseness of weakly (uniformly) continuous $2$-homogeneous polynomials on a Banach space whose Aron-Berner extensions attain their numerical radii is obtained.References
- Maria D. Acosta, Some results on operators that attain their numerical radius, Proceedings of the XVth Portuguese-Spanish Conference on Mathematics, Vol. II (Portuguese) (Évora, 1990) Univ. Évora, Évora, 1991, pp. 319–324 (Spanish, with English summary). MR 1161748
- M. D. Acosta, J. Becerra Guerrero, and M. Ruiz Galán, Numerical-radius-attaining polynomials, Q. J. Math. 54 (2003), no. 1, 1–10. MR 1967065, DOI 10.1093/qjmath/54.1.1
- Maria D. Acosta, Julio Becerra Guerrero, and Manuel Ruiz Galán, James type results for polynomials and symmetric multilinear forms, Ark. Mat. 42 (2004), no. 1, 1–11. MR 2056542, DOI 10.1007/BF02432907
- María D. Acosta and Manuel Ruiz Galán, A version of James’ theorem for numerical radius, Bull. London Math. Soc. 31 (1999), no. 1, 67–74. MR 1651005, DOI 10.1112/S0024609398004585
- María D. Acosta and Rafael Paya, Denseness of operators whose second adjoints attain their numerical radii, Proc. Amer. Math. Soc. 105 (1989), no. 1, 97–101. MR 937841, DOI 10.1090/S0002-9939-1989-0937841-3
- María D. Acosta and Rafael Paya, Norm attaining and numerical radius attaining operators, Rev. Mat. Univ. Complut. Madrid 2 (1989), no. suppl., 19–25. Congress on Functional Analysis (Madrid, 1988). MR 1057204
- Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848. MR 45941, DOI 10.1090/S0002-9939-1951-0045941-1
- Richard M. Aron and Paul D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), no. 1, 3–24 (English, with French summary). MR 508947, DOI 10.24033/bsmf.1862
- Richard M. Aron, Domingo García, and Manuel Maestre, On norm attaining polynomials, Publ. Res. Inst. Math. Sci. 39 (2003), no. 1, 165–172. MR 1935463, DOI 10.2977/prims/1145476151
- G. de Barra, J. R. Giles, and Brailey Sims, On the numerical range of compact operators on Hilbert spaces, J. London Math. Soc. (2) 5 (1972), 704–706. MR 315495, DOI 10.1112/jlms/s2-5.4.704
- I. D. Berg and Brailey Sims, Denseness of operators which attain their numerical radius, J. Austral. Math. Soc. Ser. A 36 (1984), no. 1, 130–133. MR 720006, DOI 10.1017/S1446788700027385
- Béla Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181–182. MR 267380, DOI 10.1112/blms/2.2.181
- Daniel Carando, Silvia Lassalle, and Martin Mazzitelli, On the polynomial Lindenstrauss theorem, J. Funct. Anal. 263 (2012), no. 7, 1809–1824. MR 2956926, DOI 10.1016/j.jfa.2012.06.014
- Carmen Silvia Cardassi, Numerical radius-attaining operators on $C(K)$, Proc. Amer. Math. Soc. 95 (1985), no. 4, 537–543. MR 810159, DOI 10.1090/S0002-9939-1985-0810159-1
- Erhan Çalişkan, Bounded holomorphic mappings and the compact approximation property in Banach spaces, Port. Math. (N.S.) 61 (2004), no. 1, 25–33. MR 2040241
- J. J. M. Chadwick, Schauder decompositions in non-separable Banach spaces, Bull. Austral. Math. Soc. 6 (1972), 133–144. MR 291766, DOI 10.1017/S0004972700044336
- Chong-Man Cho and William B. Johnson, A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an $M$-ideal in $L(X)$, Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470. MR 774004, DOI 10.1090/S0002-9939-1985-0774004-5
- G. Choi, M. Jung and H. J. Tag, On the Lipschitz numerical index of Banach spaces, arXiv:2110.13821, 2021.
- Yun Sung Choi, Domingo Garcia, Sung Guen Kim, and Manuel Maestre, The polynomial numerical index of a Banach space, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 1, 39–52. MR 2202141, DOI 10.1017/S0013091502000810
- Yun Sung Choi, Han Ju Lee, and Hyun Gwi Song, Denseness of norm-attaining mappings on Banach spaces, Publ. Res. Inst. Math. Sci. 46 (2010), no. 1, 171–182. MR 2662617, DOI 10.2977/PRIMS/4
- Sheldon Dantas, Mingu Jung, and Gonzalo Martínez-Cervantes, On the existence of non-norm-attaining operators, J. Inst. Math. Jussieu 22 (2023), no. 3, 1023–1035. MR 4574167, DOI 10.1017/S1474748021000311
- S. Dantas, S. K. Kim, H. J. Lee, and M. Mazzitelli, On various types of density of numerical radius attaining operators, Linear Multilinear Algebra (2023), DOI: 10.1080/03081087.2023.2176413.
- A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), no. 2, 351–356. MR 947313, DOI 10.1090/S0002-9939-1989-0947313-8
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- J. Duncan, C. M. McGregor, J. D. Pryce, and A. J. White, The numerical index of a normed space, J. London Math. Soc. (2) 2 (1970), 481–488. MR 264371, DOI 10.1112/jlms/2.Part_{3}.481
- J. R. Holub, Reflexivity of $L(E,\,F)$, Proc. Amer. Math. Soc. 39 (1973), 175–177. MR 315407, DOI 10.1090/S0002-9939-1973-0315407-4
- Robert C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101–119. MR 176310, DOI 10.1007/BF02759950
- M. Jiménez Sevilla and J. P. Moreno, A note on norm attaining functionals, Proc. Amer. Math. Soc. 126 (1998), no. 7, 1989–1997. MR 1485482, DOI 10.1090/S0002-9939-98-04739-X
- Vladimir Kadets, Miguel Martín, Javier Merí, and Dirk Werner, Lipschitz slices and the Daugavet equation for Lipschitz operators, Proc. Amer. Math. Soc. 143 (2015), no. 12, 5281–5292. MR 3411146, DOI 10.1090/proc/12818
- N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267–278. MR 341154, DOI 10.1007/BF01432152
- Sun Kwang Kim, Han Ju Lee, Miguel Martín, and Javier Merí, On a second numerical index for Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 1003–1051. MR 4080469, DOI 10.1017/prm.2018.75
- Joram Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139–148. MR 160094, DOI 10.1007/BF02759700
- Miguel Martín and Rafael Payá, Numerical index of vector-valued function spaces, Studia Math. 142 (2000), no. 3, 269–280. MR 1792610, DOI 10.4064/sm-142-3-269-280
- Jorge Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR 842435
- Jorge Mujica, Reflexive spaces of homogeneous polynomials, Bull. Polish Acad. Sci. Math. 49 (2001), no. 3, 211–222. MR 1863260
- Jorge Mujica and Manuel Valdivia, Holomorphic germs on Tsirelson’s space, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1379–1384. MR 1219730, DOI 10.1090/S0002-9939-1995-1219730-5
- Rafael Payá, A counterexample on numerical radius attaining operators, Israel J. Math. 79 (1992), no. 1, 83–101. MR 1195254, DOI 10.1007/BF02764803
- R. Payá-Albert, Numerical range of operators and structure in Banach spaces, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 131, 357–364. MR 668182, DOI 10.1093/qmath/33.3.357
- Ruidong Wang, Xujian Huang, and Dongni Tan, On the numerical radius of Lipschitz operators in Banach spaces, J. Math. Anal. Appl. 411 (2014), no. 1, 1–18. MR 3118463, DOI 10.1016/j.jmaa.2013.08.054
- Ignacio Zalduendo, Extending polynomials on Banach spaces—a survey, Rev. Un. Mat. Argentina 46 (2005), no. 2, 45–72 (2006). MR 2281672
- Václav Zizler, On some extremal problems in Banach spaces, Math. Scand. 32 (1973), 214–224 (1974). MR 346492, DOI 10.7146/math.scand.a-11456
Bibliographic Information
- Mingu Jung
- Affiliation: School of Mathematics, Korea Institute for Advanced Study, 02455 Seoul
- Address at time of publication: School of Mathematics, Korea Institute for Advanced Study, 02455 Seoul
- MR Author ID: 1317822
- ORCID: 0000-0003-2240-2855
- Email: jmingoo@kias.re.kr
- Received by editor(s): October 4, 2022
- Received by editor(s) in revised form: February 13, 2023, and February 15, 2023
- Published electronically: May 12, 2023
- Additional Notes: The first author was supported by a KIAS Individual Grant (MG086601) at Korea Institute for Advanced Study.
- Communicated by: Stephen Dilworth
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4419-4434
- MSC (2020): Primary 47A12; Secondary 46B10, 46G25
- DOI: https://doi.org/10.1090/proc/16457
- MathSciNet review: 4643328