$W^{1,p}$ approximation of the Moser–Trudinger inequality
HTML articles powered by AMS MathViewer
- by Masato Hashizume and Norisuke Ioku;
- Proc. Amer. Math. Soc. 151 (2023), 4279-4289
- DOI: https://doi.org/10.1090/proc/16508
- Published electronically: July 21, 2023
- HTML | PDF | Request permission
Abstract:
We propose a power type approximation of the Moser–Trudinger functional and show that its concentration level converges to the Carleson–Chang limit.References
- Shinji Adachi and Kazunaga Tanaka, Trudinger type inequalities in $\mathbf R^N$ and their best exponents, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2051–2057. MR 1646323, DOI 10.1090/S0002-9939-99-05180-1
- R. A. Adams, On the Orlicz-Sobolev imbedding theorem, J. Functional Analysis 24 (1977), no. 3, 241–257. MR 430770, DOI 10.1016/0022-1236(77)90055-6
- Angelo Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A (5) 14 (1977), no. 1, 148–156. MR 438106
- George Arfken, Mathematical methods for physicists, Academic Press, New York-London, 1966. MR 205512
- Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573–598 (French). MR 448404
- Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490. MR 699419, DOI 10.1090/S0002-9939-1983-0699419-3
- Lennart Carleson and Sun-Yung A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986), no. 2, 113–127 (English, with French summary). MR 878016
- Andrea Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45 (1996), no. 1, 39–65. MR 1406683, DOI 10.1512/iumj.1996.45.1958
- D. Cassani, F. Sani, and C. Tarsi, Equivalent Moser type inequalities in $\Bbb {R}^2$ and the zero mass case, J. Funct. Anal. 267 (2014), no. 11, 4236–4263. MR 3269875, DOI 10.1016/j.jfa.2014.09.022
- Djairo G. de Figueiredo, João Marcos do Ó, and Bernhard Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. 55 (2002), no. 2, 135–152. MR 1865413, DOI 10.1002/cpa.10015
- Martin Flucher, Extremal functions for the Trudinger-Moser inequality in $2$ dimensions, Comment. Math. Helv. 67 (1992), no. 3, 471–497. MR 1171306, DOI 10.1007/BF02566514
- Masato Hashizume, Maximization problem on Trudinger-Moser inequality involving Lebesgue norm, J. Funct. Anal. 279 (2020), no. 2, 108513, 30. MR 4088492, DOI 10.1016/j.jfa.2020.108513
- S. Ibrahim, N. Masmoudi, K. Nakanishi, and F. Sani, Sharp threshold nonlinearity for maximizing the Trudinger-Moser inequalities, J. Funct. Anal. 278 (2020), no. 1, 108302, 52. MR 4027748, DOI 10.1016/j.jfa.2019.108302
- Norisuke Ioku, Attainability of the best Sobolev constant in a ball, Math. Ann. 375 (2019), no. 1-2, 1–16. MR 4000234, DOI 10.1007/s00208-018-1776-7
- Michinori Ishiwata, Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in $\Bbb R^N$, Math. Ann. 351 (2011), no. 4, 781–804. MR 2854113, DOI 10.1007/s00208-010-0618-z
- Yuxiang Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A 48 (2005), no. 5, 618–648. MR 2158479, DOI 10.1360/04ys0050
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- Gabriele Mancini and Luca Martinazzi, The Moser-Trudinger inequality and its extremals on a disk via energy estimates, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Paper No. 94, 26. MR 3661018, DOI 10.1007/s00526-017-1184-y
- J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092. MR 301504, DOI 10.1512/iumj.1971.20.20101
- Takayoshi Ogawa, A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal. 14 (1990), no. 9, 765–769. MR 1049119, DOI 10.1016/0362-546X(90)90104-O
- S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, Proc. Tech. Sci. Conf. on Adv. Sci. Research 1964–1965, Mathematics Section, Moskov. Ènerget. Inst., Moscow, 1965, pp. 158–170.
- Bernhard Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^2$, J. Funct. Anal. 219 (2005), no. 2, 340–367. MR 2109256, DOI 10.1016/j.jfa.2004.06.013
- Megumi Sano and Futoshi Takahashi, Critical Hardy inequality on the half-space via the harmonic transplantation, Calc. Var. Partial Differential Equations 61 (2022), no. 4, Paper No. 158, 33. MR 4439901, DOI 10.1007/s00526-022-02265-w
- Michael Struwe, Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 5, 425–464 (English, with French summary). MR 970849, DOI 10.1016/s0294-1449(16)30338-9
- Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. MR 463908, DOI 10.1007/BF02418013
- Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. MR 216286, DOI 10.1512/iumj.1968.17.17028
- Constantino Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys. 52 (1988), no. 1-2, 479–487. MR 968597, DOI 10.1007/BF01016429
- V. I. Judovič, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR 138 (1961), 805–808 (Russian). MR 140822
Bibliographic Information
- Masato Hashizume
- Affiliation: Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan
- MR Author ID: 1117592
- Email: mhashizume@hiroshima-u.ac.jp
- Norisuke Ioku
- Affiliation: Mathematical Institute, Tohoku University, Aramaki 6-3, Sendai 980-8578, Japan
- MR Author ID: 866920
- Email: ioku@tohoku.ac.jp
- Received by editor(s): April 25, 2022
- Received by editor(s) in revised form: December 5, 2022
- Published electronically: July 21, 2023
- Additional Notes: This work was supported by JSPS KAKENHI Grant Number 21K18582, 19KK0349, 19K14571, 20KK0057 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0619217849.
- Communicated by: Ryan Hynd
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4279-4289
- MSC (2020): Primary 46E35; Secondary 41A46, 40A25
- DOI: https://doi.org/10.1090/proc/16508
- MathSciNet review: 4643318