Spectrum of the wave equation with Dirac damping on a non-compact star graph
HTML articles powered by AMS MathViewer
- by David Krejčiřík and Julien Royer;
- Proc. Amer. Math. Soc. 151 (2023), 4673-4691
- DOI: https://doi.org/10.1090/proc/16412
- Published electronically: May 12, 2023
- HTML | PDF | Request permission
Abstract:
We consider the wave equation on non-compact star graphs, subject to a distributional damping defined through a Robin-type vertex condition with complex coupling. It is shown that the non-self-adjoint generator of the evolution problem admits an abrupt change in its spectral properties for a special coupling related to the number of graph edges. As an application, we show that the evolution problem is highly unstable for the critical couplings. The relationship with the Dirac equation in non-relativistic quantum mechanics is also mentioned.References
- Farah Abdallah, Denis Mercier, and Serge Nicaise, Exponential stability of the wave equation on a star shaped network on indefinite sign damping, Palest. J. Math. 2 (2013), no. 2, 113–143. MR 3109894, DOI 10.3934/eect.2013.2.1
- Kais Ammari, Antoine Henrot, and Marius Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, Asymptot. Anal. 28 (2001), no. 3-4, 215–240. MR 1878795
- Kaïs Ammari and Serge Nicaise, Stabilization of elastic systems by collocated feedback, Lecture Notes in Mathematics, vol. 2124, Springer, Cham, 2015. MR 3308343, DOI 10.1007/978-3-319-10900-8
- Kais Ammari, Marius Tucsnak, and Antoine Henrot, Optimal location of the actuator for the pointwise stabilization of a string, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 4, 275–280 (English, with English and French summaries). MR 1753293, DOI 10.1016/S0764-4442(00)00113-0
- Naiara Arrizabalaga, Albert Mas, and Luis Vega, Shell interactions for Dirac operators, J. Math. Pures Appl. (9) 102 (2014), no. 4, 617–639. MR 3258125, DOI 10.1016/j.matpur.2013.12.006
- R. Assel, M. Jellouli, and M. Khenissi, Optimal decay rate for the local energy of a unbounded network, J. Differential Equations 261 (2016), no. 7, 4030–4054. MR 3532064, DOI 10.1016/j.jde.2016.06.016
- A. Bamberger, J. Rauch, and M. Taylor, A model for harmonics on stringed instruments, Arch. Rational Mech. Anal. 79 (1982), no. 4, 267–290. MR 656795, DOI 10.1007/BF00250794
- Jussi Behrndt and Markus Holzmann, On Dirac operators with electrostatic $\delta$-shell interactions of critical strength, J. Spectr. Theory 10 (2020), no. 1, 147–184. MR 4071335, DOI 10.4171/JST/289
- Steven J. Cox and Antoine Henrot, Eliciting harmonics on strings, ESAIM Control Optim. Calc. Var. 14 (2008), no. 4, 657–677. MR 2451789, DOI 10.1051/cocv:2008004
- Jean-Claude Cuenin and Petr Siegl, Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications, Lett. Math. Phys. 108 (2018), no. 7, 1757–1778. MR 3802729, DOI 10.1007/s11005-018-1051-6
- D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
- Pedro Freitas, Nicolas Hefti, and Petr Siegl, The damped wave equation with singular damping, Proc. Amer. Math. Soc. 148 (2020), no. 10, 4273–4284. MR 4135296, DOI 10.1090/proc/15063
- Pedro Freitas and Jiří Lipovský, Eigenvalue asymptotics for the damped wave equation on metric graphs, J. Differential Equations 263 (2017), no. 5, 2780–2811. MR 3655800, DOI 10.1016/j.jde.2017.04.012
- Pedro Freitas, Petr Siegl, and Christiane Tretter, The damped wave equation with unbounded damping, J. Differential Equations 264 (2018), no. 12, 7023–7054. MR 3779629, DOI 10.1016/j.jde.2018.02.010
- B. Gerhat, Schur complement dominant operator matrices, Preprint, 2021.
- Fritz Gesztesy, Jerome A. Goldstein, Helge Holden, and Gerald Teschl, Abstract wave equations and associated Dirac-type operators, Ann. Mat. Pura Appl. (4) 191 (2012), no. 4, 631–676. MR 2993967, DOI 10.1007/s10231-011-0200-7
- Fritz Gesztesy and Helge Holden, The damped string problem revisited, J. Differential Equations 251 (2011), no. 4-5, 1086–1127. MR 2812583, DOI 10.1016/j.jde.2011.04.025
- Markus Holzmann, Thomas Ourmières-Bonafos, and Konstantin Pankrashkin, Dirac operators with Lorentz scalar shell interactions, Rev. Math. Phys. 30 (2018), no. 5, 1850013, 46. MR 3808067, DOI 10.1142/S0129055X18500137
- Amru Hussein, David Krejčiřík, and Petr Siegl, Non-self-adjoint graphs, Trans. Amer. Math. Soc. 367 (2015), no. 4, 2921–2957. MR 3301887, DOI 10.1090/S0002-9947-2014-06432-5
- Amru Hussein, Hidden symmetries in non-self-adjoint graphs, Comm. Partial Differential Equations 46 (2021), no. 9, 1674–1728. MR 4304692, DOI 10.1080/03605302.2021.1893746
- David Krejčiřík and Tereza Kurimaiová, From Lieb-Thirring inequalities to spectral enclosures for the damped wave equation, Integral Equations Operator Theory 92 (2020), no. 6, Paper No. 47, 12. MR 4169408, DOI 10.1007/s00020-020-02607-3
- D. Krejčiřík, P. Siegl, M. Tater, and J. Viola, Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys. 56 (2015), no. 10, 103513, 32. MR 3416732, DOI 10.1063/1.4934378
- Thomas Ourmières-Bonafos and Luis Vega, A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and $\delta$-shell interactions, Publ. Mat. 62 (2018), no. 2, 397–437. MR 3815285, DOI 10.5565/PUBLMAT6221804
- Gabriel Rivière and Julien Royer, Spectrum of a non-selfadjoint quantum star graph, J. Phys. A 53 (2020), no. 49, 495202, 30. MR 4188772, DOI 10.1088/1751-8121/abbfbe
Bibliographic Information
- David Krejčiřík
- Affiliation: Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Prague, Czech Republic
- Email: david.krejcirik@fjfi.cvut.cz
- Julien Royer
- Affiliation: Institut de mathématiques de Toulouse, Université Toulouse 3, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
- MR Author ID: 846278
- Email: julien.royer@math.univ-toulouse.fr
- Received by editor(s): May 23, 2022
- Received by editor(s) in revised form: January 4, 2023, and January 17, 2023
- Published electronically: May 12, 2023
- Additional Notes: The first author was supported by the EXPRO grant No. 20-17749X of the Czech Science Foundation. The second author was supported by the ANR LabEx CIMI (grant ANR-11-LABX-0040) within the French State Programme “Investissements d’Avenir”.
- Communicated by: Tanya Christiansen
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4673-4691
- MSC (2020): Primary 47A10, 47B44, 35R02, 35L05
- DOI: https://doi.org/10.1090/proc/16412
- MathSciNet review: 4634873