A note on the integrality of volumes of representations
HTML articles powered by AMS MathViewer
- by Sungwoon Kim;
- Proc. Amer. Math. Soc. 151 (2023), 4949-4960
- DOI: https://doi.org/10.1090/proc/16472
- Published electronically: June 30, 2023
- HTML | PDF | Request permission
Abstract:
Let $\Gamma$ be a torsion-free, non-uniform lattice in $\mathrm {SO}(2n,1)$. We present an elementary, combinatorial–geometrical proof of a theorem of Bucher, Burger, and Iozzi [Math. Ann. 381 (2021), pp. 209–242] which states that the volume of a representation $\rho :\Gamma \to \mathrm {SO}(2n,1)$, properly normalized, is an integer if $n$ is greater than or equal to $2$.References
- Michelle Bucher, Marc Burger, and Alessandra Iozzi, Integrality of volumes of representations, Math. Ann. 381 (2021), no. 1-2, 209–242. MR 4322611, DOI 10.1007/s00208-020-02047-9
- Michelle Bucher, Marc Burger, and Alessandra Iozzi, A dual interpretation of the Gromov-Thurston proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices, Trends in harmonic analysis, Springer INdAM Ser., vol. 3, Springer, Milan, 2013, pp. 47–76. MR 3026348, DOI 10.1007/978-88-470-2853-1_{4}
- H. Hopf, Die Curvatura Integra Clifford–Kleinscher Raumformen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1925), 131–141.
- Gérard Besson, Gilles Courtois, and Sylvestre Gallot, Inégalités de Milnor-Wood géométriques, Comment. Math. Helv. 82 (2007), no. 4, 753–803 (French, with English and French summaries). MR 2341839, DOI 10.4171/CMH/109
- Sungwoon Kim and Inkang Kim, On deformation spaces of nonuniform hyperbolic lattices, Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 2, 283–303. MR 3530508, DOI 10.1017/S0305004116000293
- Ruth Kellerhals and Thomas Zehrt, The Gauss-Bonnet formula for hyperbolic manifolds of finite volume, Geom. Dedicata 84 (2001), no. 1-3, 49–62. MR 1825344, DOI 10.1023/A:1010352829732
- William M. Goldman, Characteristic classes and representations of discrete subgroups of Lie groups, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 91–94. MR 634439, DOI 10.1090/S0273-0979-1982-14974-6
- Nathan M. Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999), no. 3, 623–657. MR 1695208, DOI 10.1007/s002220050321
- Stefano Francaviglia, Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds, Int. Math. Res. Not. 9 (2004), 425–459. MR 2040346, DOI 10.1155/S1073792804131619
- M. Poincaré, Sur la généralisation d’un théorème élémentaire de Géométrie, C. R. Acad. Sci. 140 (1905), 113–117.
- John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR 2249478
- Alexander Reznikov, Rationality of secondary classes, J. Differential Geom. 43 (1996), no. 3, 674–692. MR 1412681
- Michael Gromov, Hyperbolic manifolds (according to Thurston and Jørgensen), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin, 1981, pp. 40–53. MR 636516
- W. Thurston, Geometry and topology of $3$-manifolds, Notes from Princeton University, Princeton, 1979.
- E. B. Vinberg, Geometry II, In: Encyclopedia of Mathematical Sciences, Vol. 29, Springer-Verlag, 1993.
- T. Zehrt, Polytopal Complexes in Spaces of Constant Curvature, 2003.
Bibliographic Information
- Sungwoon Kim
- Affiliation: Department of Mathematics, Jeju National University, Jeju 63243, Republic of Korea
- MR Author ID: 982647
- ORCID: 0000-0003-1201-1949
- Email: sungwoon@jejunu.ac.kr
- Received by editor(s): September 4, 2022
- Received by editor(s) in revised form: March 7, 2023
- Published electronically: June 30, 2023
- Additional Notes: This work was supported by the research grant from the Chuongbong Academic Research Fund of Jeju National University in 2021.
- Communicated by: Shelly Harvey
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4949-4960
- MSC (2020): Primary 53C24, 22E40
- DOI: https://doi.org/10.1090/proc/16472
- MathSciNet review: 4634896