On Benford’s law for multiplicative functions
HTML articles powered by AMS MathViewer
- by Vorrapan Chandee, Xiannan Li, Paul Pollack and Akash Singha Roy;
- Proc. Amer. Math. Soc. 151 (2023), 4607-4619
- DOI: https://doi.org/10.1090/proc/16480
- Published electronically: July 14, 2023
- HTML | PDF | Request permission
Abstract:
We provide a criterion to determine whether a real multiplicative function is a strong Benford sequence. The criterion implies that the $k$-divisor functions, where $k \neq 10^j$, and Hecke eigenvalues of newforms, such as Ramanujan tau function, are strong Benford. In contrast to some earlier work, our approach is based on Halász’s Theorem.References
- Theresa C. Anderson, Larry Rolen, and Ruth Stoehr, Benford’s law for coefficients of modular forms and partition functions, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1533–1541. MR 2763743, DOI 10.1090/S0002-9939-2010-10577-4
- S. Aursukaree and V. Chandee, Equidistribution of $\log (d(n))$, Proceedings of Annual Pure and Applied Mathematics Conference, Chulalongkorn University, Thailand, May 2016, 399–410.
- Tom Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29–98. MR 2827723, DOI 10.2977/PRIMS/31
- F. Benford, The law of anomalous numbers, Proc. Amer. Philos. Soc. 78 (1938), no. 4, 551–572.
- Hubert Delange, Quelques résultats nouveaux sur les fonctions additives, Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969) Supplément au Bull. Soc. Math. France, Tome 99, Soc. Math. France, Paris, 1971, pp. 45–53 (French). MR 404186, DOI 10.24033/msmf.33
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- Persi Diaconis, The distribution of leading digits and uniform distribution $\textrm {mod}$ $1$, Ann. Probability 5 (1977), no. 1, 72–81. MR 422186, DOI 10.1214/aop/1176995891
- P. D. T. A. Elliott, Probabilistic number theory. I, Grundlehren der Mathematischen Wissenschaften, vol. 239, Springer-Verlag, New York-Berlin, 1979. Mean-value theorems. MR 551361, DOI 10.1007/978-1-4612-9989-9
- Andrew Granville and K. Soundararajan, Large character sums: pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 357–384. MR 2276774, DOI 10.1090/S0894-0347-06-00536-4
- Marie Jameson, Jesse Thorner, and Lynnelle Ye, Benford’s law for coefficients of newforms, Int. J. Number Theory 12 (2016), no. 2, 483–494. MR 3461444, DOI 10.1142/S1793042116500299
- Alex V. Kontorovich and Steven J. Miller, Benford’s law, values of $L$-functions and the $3x+1$ problem, Acta Arith. 120 (2005), no. 3, 269–297. MR 2188844, DOI 10.4064/aa120-3-4
- Jeffrey C. Lagarias and K. Soundararajan, Benford’s law for the $3x+1$ function, J. London Math. Soc. (2) 74 (2006), no. 2, 289–303. MR 2269630, DOI 10.1112/S0024610706023131
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- V. Kumar Murty, Modular forms and the Chebotarev density theorem. II, Analytic number theory (Kyoto, 1996) London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 287–308. MR 1694997, DOI 10.1017/CBO9780511666179.019
- Simon Newcomb, Note on the Frequency of Use of the Different Digits in Natural Numbers, Amer. J. Math. 4 (1881), no. 1-4, 39–40. MR 1505286, DOI 10.2307/2369148
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- Jesse Thorner and Asif Zaman, A Chebotarev variant of the Brun-Titchmarsh theorem and bounds for the Lang-Trotter conjectures, Int. Math. Res. Not. IMRN 16 (2018), 4991–5027. MR 3848226, DOI 10.1093/imrn/rnx031
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- Giancarlo Travaglini, Number theory, Fourier analysis and geometric discrepancy, London Mathematical Society Student Texts, vol. 81, Cambridge University Press, Cambridge, 2014. MR 3307692, DOI 10.1017/CBO9781107358379
- Da Qing Wan, On the Lang-Trotter conjecture, J. Number Theory 35 (1990), no. 3, 247–268. MR 1062334, DOI 10.1016/0022-314X(90)90117-A
- Siqi Zheng, Necessary and sufficient conditions for Benford sequences, Pi Mu Epsilon J. 13 (2013), no. 9, 553–561. MR 3155505
Bibliographic Information
- Vorrapan Chandee
- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66503
- MR Author ID: 880105
- Email: chandee@ksu.edu
- Xiannan Li
- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66503
- MR Author ID: 867056
- Email: xiannan@math.ksu.edu
- Paul Pollack
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 830585
- Email: pollack@uga.edu
- Akash Singha Roy
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 1449066
- Email: akash01s.roy@gmail.com
- Received by editor(s): April 1, 2022
- Received by editor(s) in revised form: April 12, 2022, August 22, 2022, November 29, 2022, December 7, 2022, and March 12, 2023
- Published electronically: July 14, 2023
- Additional Notes: The first author was supported by the Simons Foundation Collaboration Grant for Mathematicians and NSF grant DMS-2101806
The second author was supported by the Simons Foundation Collaboration Grant for Mathematicians
The third author was supported by NSF grant DMS-2001581 - Communicated by: Amanda Folsom
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4607-4619
- MSC (2020): Primary 11N60, 11A41, 11B99
- DOI: https://doi.org/10.1090/proc/16480
- MathSciNet review: 4634867