Derivations and homomorphisms in commutator-simple algebras
HTML articles powered by AMS MathViewer
- by J. Alaminos, M. Brešar, J. Extremera, M. L. C. Godoy and A. R. Villena;
- Proc. Amer. Math. Soc. 151 (2023), 4721-4733
- DOI: https://doi.org/10.1090/proc/16483
- Published electronically: August 4, 2023
- HTML | PDF | Request permission
Abstract:
We call an algebra $A$ commutator-simple if $[A,A]$ does not contain nonzero ideals of $A$. After providing several examples, we show that in these algebras derivations are determined by a condition that is applicable to the study of local derivations. This enables us to prove that every continuous local derivation $D\colon L^1(G)\to L^1(G)$, where $G$ is a unimodular locally compact group, is a derivation. We also give some remarks on homomorphism-like maps in commutator-simple algebras.References
- U. Bader, T. Gelander, and N. Monod, A fixed point theorem for $L^1$ spaces, Invent. Math. 189 (2012), no. 1, 143–148. MR 2929085, DOI 10.1007/s00222-011-0363-2
- V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), no. 1, 75–97 (Russian); English transl., St. Petersburg Math. J. 4 (1993), no. 1, 71–92. MR 1171955
- Matej Brešar, Introduction to noncommutative algebra, Universitext, Springer, Cham, 2014. MR 3308118, DOI 10.1007/978-3-319-08693-4
- Matej Brešar, Automorphisms and derivations of finite-dimensional algebras, J. Algebra 599 (2022), 104–121. MR 4390457, DOI 10.1016/j.jalgebra.2022.02.010
- Paul R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275–289. MR 350442, DOI 10.1016/0022-1236(73)90080-3
- J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321–324. MR 399182, DOI 10.1090/S0002-9939-1975-0399182-5
- M. A. Farinati, A. Solotar, and M. Suárez-Álvarez, Hochschild homology and cohomology of generalized Weyl algebras, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 2, 465–488 (English, with English and French summaries). MR 1990004, DOI 10.5802/aif.1950
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- Antonio Giambruno and Mikhail Zaicev, Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs, vol. 122, American Mathematical Society, Providence, RI, 2005. MR 2176105, DOI 10.1090/surv/122
- Bruno Harris, Commutators in division rings, Proc. Amer. Math. Soc. 9 (1958), 628–630. MR 96697, DOI 10.1090/S0002-9939-1958-0096697-4
- I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341. MR 76751, DOI 10.1090/S0002-9947-1956-0076751-6
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 81264, DOI 10.1090/coll/037
- Richard V. Kadison, Local derivations, J. Algebra 130 (1990), no. 2, 494–509. MR 1051316, DOI 10.1016/0021-8693(90)90095-6
- David R. Larson and Ahmed R. Sourour, Local derivations and local automorphisms of ${\scr B}(X)$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR 1077437, DOI 10.1090/pspum/051.2/1077437
- Viktor Losert, The derivation problem for group algebras, Ann. of Math. (2) 168 (2008), no. 1, 221–246. MR 2415402, DOI 10.4007/annals.2008.168.221
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- Theodore W. Palmer, Banach algebras and the general theory of $*$-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001. $*$-algebras. MR 1819503, DOI 10.1017/CBO9780511574757.003
- Ebrahim Samei, Approximately local derivations, J. London Math. Soc. (2) 71 (2005), no. 3, 759–778. MR 2132382, DOI 10.1112/S0024610705006496
- Ebrahim Samei, Reflexivity and hyperreflexivity of bounded $n$-cocycles from group algebras, Proc. Amer. Math. Soc. 139 (2011), no. 1, 163–176. MR 2729080, DOI 10.1090/S0002-9939-2010-10454-9
Bibliographic Information
- J. Alaminos
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- MR Author ID: 641559
- ORCID: 0000-0002-7857-7833
- Email: alaminos@ugr.es
- M. Brešar
- Affiliation: Faculty of Mathematics and Physics, University of Ljubljana, and Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
- ORCID: 0000-0001-7574-212X
- Email: matej.bresar@fmf.uni-lj.si
- J. Extremera
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- MR Author ID: 692437
- Email: jlizana@ugr.es
- M. L. C. Godoy
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- MR Author ID: 1306099
- ORCID: 0000-0001-5772-5385
- Email: mgodoy@ugr.es
- A. R. Villena
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- MR Author ID: 309482
- Email: avillena@ugr.es
- Received by editor(s): October 25, 2022
- Received by editor(s) in revised form: March 10, 2023
- Published electronically: August 4, 2023
- Additional Notes: The first, third, fourth, and fifth authors were supported by the Grant PID2021-122126NB-C31 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe” and grant FQM-185 funded by Junta de Andalucía. The second author was supported by the Slovenian Research Agency (ARRS) Grant P1-0288. The fourth author was also supported by grant FPU18/00419 funded by MIU
- Communicated by: Javad Mashreghi
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4721-4733
- MSC (2020): Primary 43A20, 47L10, 16W20, 16W25
- DOI: https://doi.org/10.1090/proc/16483
- MathSciNet review: 4634876