Entire weak solutions for an anisotropic equation in the Heisenberg group
HTML articles powered by AMS MathViewer
- by Abdolrahman Razani;
- Proc. Amer. Math. Soc. 151 (2023), 4771-4779
- DOI: https://doi.org/10.1090/proc/16488
- Published electronically: June 30, 2023
- HTML | PDF | Request permission
Abstract:
Here, we consider an anisotropic equation \[ -\Delta _{{\mathbb {H}^n},\overrightarrow {p}}u +a(q)|u|^{p^–2}u=\lambda w(q)|u|^{m-2}u-h(q)|u|^{l-2}u, \] in the Heisenberg group ${\mathbb {H}^n}$, where the operator $\Delta _{{\mathbb {H}^n},\overrightarrow {p}}$ is the horizontal anisotropic $p$-Laplacian on the Heisenberg group and is defined in the sequel. By the variational methods, we prove the existence of the entire weak solutions.References
- Jie Ying Chu, Zun Wei Fu, and Qing Yan Wu, $L^p$ and BMO bounds for weighted Hardy operators on the Heisenberg group, J. Inequal. Appl. , posted on (2016), Paper No. 282, 12. MR 3574041, DOI 10.1186/s13660-016-1222-x
- Simone Ciani, Giovany M. Figueiredo, and Antonio Suárez, Existence of positive eigenfunctions to an anisotropic elliptic operator via the sub-supersolution method, Arch. Math. (Basel) 116 (2021), no. 1, 85–95. MR 4203624, DOI 10.1007/s00013-020-01518-4
- Giovany Figueiredo, João R. Santos Júnior, and Antonio Suárez, Multiplicity results for an anisotropic equation with subcritical or critical growth, Adv. Nonlinear Stud. 15 (2015), no. 2, 377–394. MR 3337879, DOI 10.1515/ans-2015-0206
- Giovany M. Figueiredo and Julio R. S. Silva, A critical anisotropic problem with discontinuous nonlinearities, Nonlinear Anal. Real World Appl. 47 (2019), 364–372. MR 3885259, DOI 10.1016/j.nonrwa.2018.11.008
- Ilaria Fragalà, Filippo Gazzola, and Bernd Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 21 (2004), no. 5, 715–734 (English, with English and French summaries). MR 2086756, DOI 10.1016/j.anihpc.2003.12.001
- N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 2, 313–356 (English, with French summary). MR 1070830, DOI 10.5802/aif.1215
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Gian Paolo Leonardi and Simon Masnou, On the isoperimetric problem in the Heisenberg group ${\Bbb H}^n$, Ann. Mat. Pura Appl. (4) 184 (2005), no. 4, 533–553. MR 2177813, DOI 10.1007/s10231-004-0127-3
- Annunziata Loiudice, Improved Sobolev inequalities on the Heisenberg group, Nonlinear Anal. 62 (2005), no. 5, 953–962. MR 2153462, DOI 10.1016/j.na.2005.04.015
- Patrizia Pucci, Critical Schrödinger-Hardy systems in the Heisenberg group, Discrete Contin. Dyn. Syst. Ser. S 12 (2019), no. 2, 375–400. MR 3842328, DOI 10.3934/dcdss.2019025
- Patrizia Pucci, Existence of entire solutions for quasilinear equations in the Heisenberg group, Minimax Theory Appl. 4 (2019), no. 1, 161–188. MR 3915613
- Patrizia Pucci, Existence and multiplicity results for quasilinear equations in the Heisenberg group, Opuscula Math. 39 (2019), no. 2, 247–257. MR 3897816, DOI 10.7494/opmath.2019.39.2.247
- Patrizia Pucci and Qihu Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations 257 (2014), no. 5, 1529–1566. MR 3217048, DOI 10.1016/j.jde.2014.05.023
- Abdolrahman Razani and Giovany M. Figueiredo, Existence of infinitely many solutions for an anisotropic equation using genus theory, Math. Methods Appl. Sci. 45 (2022), no. 12, 7591–7606. MR 4456055, DOI 10.1002/mma.8264
- Abdolrahman Razani and Giovany M. Figueiredo, A positive solution for an anisotropic $(p,q)$-Laplacian, Discrete Contin. Dyn. Syst. Ser. S 16 (2023), no. 6, 1629–1643. MR 4592998, DOI 10.3934/dcdss.2022147
- A. Razani and G. M. Figueiredo, Degenerated and competing anisotropic $(p,q)$-Laplacians with weights, Appl. Anal. (2022). https://doi.org/10.1080/00036811.2022.2119137
- F. Safari and A. Razani, Existence of positive radial solution for Neumann problem on the Heisenberg group, Bound. Value Probl. , posted on (2020), Paper No. 88, 14. MR 4097337, DOI 10.1186/s13661-020-01386-5
- F. Sarafi and A. Razani, Nonlinear nonhomogeneous Neumann problem on the Heisenberg group, Appl. Anal. 101 (2022), no. 7, 2387–2400. MR 4425011, DOI 10.1080/00036811.2020.1807013
- F. Safari and A. Razani, Existence of radial solutions of the Kohn-Laplacian problem, Complex Var. Elliptic Equ. 67 (2022), no. 2, 259–273. MR 4386495, DOI 10.1080/17476933.2020.1818733
- Farzaneh Safari and Abdolrahman Razani, Existence of radial solutions for a weighted $p$-biharmonic problem with Navier boundary condition on the Heisenberg group, Math. Slovaca 72 (2022), no. 3, 677–692. MR 4437494, DOI 10.1515/ms-2022-0046
- Michael Struwe, Variational methods, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 34, Springer-Verlag, Berlin, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 2431434
- G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallfächen, Z. F. Kristallog 34 (1901), 449–530.
- C. Xia, On a class of anisotropic problems, Doctorla Dissertation, Albert-Ludwigs-University of Freiburg in the Breisgau, 2012.
Bibliographic Information
- Abdolrahman Razani
- Affiliation: Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, 3414896818 Qazvin, Iran
- MR Author ID: 679242
- ORCID: 0000-0002-3092-3530
- Email: razani@sci.ikiu.ac.ir
- Received by editor(s): August 23, 2022
- Received by editor(s) in revised form: March 17, 2023
- Published electronically: June 30, 2023
- Communicated by: Wenxian Shen
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4771-4779
- MSC (2010): Primary 35J62, 35J70, 35B08, 35J20, 35B09, 35R03
- DOI: https://doi.org/10.1090/proc/16488
- MathSciNet review: 4634880