Relatively quasimöbius mappings in Banach spaces
HTML articles powered by AMS MathViewer
- by Qingshan Zhou, Liulan Li, Saminathan Ponnusamy and Yuehui He;
- Proc. Amer. Math. Soc. 151 (2023), 4781-4792
- DOI: https://doi.org/10.1090/proc/16495
- Published electronically: June 30, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we explore relatively quasimöbius invariance of $\varphi$-uniform domains and natural domains. Firstly, we prove that the control function of relatively quasimöbius mappings can be chosen in a power form. Applying this observation and a deformed cross–ratio introduced by Bonk and Kleiner, we next show that relatively quasimöbius mappings are coarsely bilipschitz in the distance ratio metric. Combined with the assumption that the mapping is coarsely bilipschitz in the quasihyperbolic metric, we establish relatively quasimöbius invariance of $\varphi$-uniform domains and natural domains. As a by-product, we also obtain a similar result for uniform domains which provides a new method to answer a question posed by Väisälä.References
- Zoltán M. Balogh and Stephen M. Buckley, Sphericalization and flattening, Conform. Geom. Dyn. 9 (2005), 76–101. MR 2179368, DOI 10.1090/S1088-4173-05-00124-4
- Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. MR 1930885, DOI 10.1007/s00222-002-0233-z
- Stephen M. Buckley, David A. Herron, and Xiangdong Xie, Metric space inversions, quasihyperbolic distance, and uniform spaces, Indiana Univ. Math. J. 57 (2008), no. 2, 837–890. MR 2414336
- Sergei Buyalo and Viktor Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. MR 2327160, DOI 10.4171/036
- Ruth Charney, Matthew Cordes, and Devin Murray, Quasi-Mobius homeomorphisms of Morse boundaries, Bull. Lond. Math. Soc. 51 (2019), no. 3, 501–515. MR 3964503, DOI 10.1112/blms.12246
- F. W. Gehring and K. Hag, Remarks on uniform and quasiconformal extension domains, Complex Variables Theory Appl. 9 (1987), no. 2-3, 175–188. MR 923218, DOI 10.1080/17476938708814261
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- Peter Hästö, Riku Klén, Swadesh Kumar Sahoo, and Matti Vuorinen, Geometric properties of $\varphi$-uniform domains, J. Anal. 24 (2016), no. 1, 57–66. MR 3755809, DOI 10.1007/s41478-016-0011-8
- David Herron, Nageswari Shanmugalingam, and Xiangdong Xie, Uniformity from Gromov hyperbolicity, Illinois J. Math. 52 (2008), no. 4, 1065–1109. MR 2595756
- M. Huang, Y. Li, M. Vuorinen, and X. Wang, On quasimöbius maps in real Banach spaces, Israel J. Math. 198 (2013), no. 1, 467–486. MR 3096647, DOI 10.1007/s11856-013-0043-6
- Julian Jordi, Interplay between interior and boundary geometry in Gromov hyperbolic spaces, Geom. Dedicata 149 (2010), 129–154. MR 2737684, DOI 10.1007/s10711-010-9472-0
- O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), no. 2, 383–401. MR 565886, DOI 10.5186/aasfm.1978-79.0413
- O. Martio, Definitions for uniform domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 197–205. MR 595191, DOI 10.5186/aasfm.1980.0517
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- Jussi Väisälä, Quasi-Möbius maps, J. Analyse Math. 44 (1984/85), 218–234. MR 801295, DOI 10.1007/BF02790198
- Jussi Väisälä, Free quasiconformality in Banach spaces. I, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 2, 355–379. MR 1087342, DOI 10.5186/aasfm.1990.1527
- Jussi Väisälä, Free quasiconformality in Banach spaces. II, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 255–310. MR 1139798, DOI 10.5186/aasfm.1991.1629
- Jussi Väisälä, Free quasiconformality in Banach spaces. III, Ann. Acad. Sci. Fenn. Ser. A I Math. 17 (1992), no. 2, 393–408. MR 1190331, DOI 10.5186/aasfm.1992.1732
- J. Väisälä, The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics $($Lublin 1996$)$, Banach Center Publications, Vol. 48, 1999, 55–118.
- Jussi Väisälä, Broken tubes in Hilbert spaces, Analysis (Munich) 24 (2004), no. 3, 227–238. MR 2121019, DOI 10.1524/anly.2004.24.14.227
- Vyron Vellis, Quasisymmetric extension on the real line, Proc. Amer. Math. Soc. 146 (2018), no. 6, 2435–2450. MR 3778147, DOI 10.1090/proc/13346
- Matti Vuorinen, Conformal invariants and quasiregular mappings, J. Analyse Math. 45 (1985), 69–115. MR 833408, DOI 10.1007/BF02792546
- Xiangdong Xie, Quasimöbius maps preserve uniform domains, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 481–495. MR 2337490
- Qingshan Zhou, Xining Li, and Yaxiang Li, Deformations on symbolic Cantor sets and ultrametric spaces, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 4, 3259–3270. MR 4107918, DOI 10.1007/s40840-019-00863-0
- Qingshan Zhou, Yaxiang Li, and Xining Li, Sphericalizations and applications in Gromov hyperbolic spaces, J. Math. Anal. Appl. 509 (2022), no. 1, Paper No. 125948, 19. MR 4358607, DOI 10.1016/j.jmaa.2021.125948
- Qingshan Zhou and Saminathan Ponnusamy, Gromov hyperbolicity in the free quasiworld. I, Studia Math. 268 (2023), no. 1, 23–49. MR 4504439, DOI 10.4064/sm210825-7-3
- Qingshan Zhou and Antti Rasila, Quasimöbius invariance of uniform domains, Studia Math. 261 (2021), no. 1, 1–24. MR 4309849, DOI 10.4064/sm191215-22-10
Bibliographic Information
- Qingshan Zhou
- Affiliation: School of Mathematics and Big Data, Foshan University, Foshan, Guangdong 528000, People’s Republic of China
- ORCID: 0000-0003-3225-3777
- Email: qszhou1989@163.com; q476308142@qq.com
- Liulan Li
- Affiliation: College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan, People’s Republic of China
- MR Author ID: 771284
- ORCID: 0000-0001-7542-0219
- Email: lanlimail2012@sina.cn
- Saminathan Ponnusamy
- Affiliation: Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India; and Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
- MR Author ID: 259376
- ORCID: 0000-0002-3699-2713
- Email: samy@iitm.ac.in
- Yuehui He
- Affiliation: School of Mathematics and Big Data, Foshan University, Foshan, Guangdong 528000, People’s Republic of China
- Email: yhhe93@163.com
- Received by editor(s): November 26, 2022
- Received by editor(s) in revised form: February 18, 2023, and March 18, 2023
- Published electronically: June 30, 2023
- Additional Notes: The first author was partly supported by Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012441), by Department of Education of Guangdong Province, China (No. 2021KTSCX116). The second author was supported by the Scientific Research Fund of Hunan Provincial Education Department (20A070). The fourth author was partly supported by Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515111136), and Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (No. 2020B1212030010).
The fourth author is the corresponding author - Communicated by: Nageswari Shanmugalingam
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4781-4792
- MSC (2020): Primary 30C65; Secondary 30C20
- DOI: https://doi.org/10.1090/proc/16495
- MathSciNet review: 4634881