Conditions on the monodromy for a surface group extension to be CAT(0)
HTML articles powered by AMS MathViewer
- by Kejia Zhu;
- Proc. Amer. Math. Soc. 151 (2023), 4643-4651
- DOI: https://doi.org/10.1090/proc/16518
- Published electronically: July 28, 2023
- HTML | PDF | Request permission
Abstract:
In order to determine when surface-by-surface bundles are non-positively curved, Llosa Isenrich and Py [Math. Ann. 380 (2021), pp. 449–485] give a necessary condition: given a surface-by-surface group $G$ with infinite monodromy, if $G$ is CAT(0) then the monodromy representation is injective. We extend this to a more general result: Let $G$ be a group with a normal surface subgroup $R$. Assume $G/R$ satisfies the property that for every infinite normal subgroup $\Lambda$ of $G/R$, there is an infinite finitely generated subgroup $\Lambda _0<\Lambda$ so that the centralizer $C_{G/R}(\Lambda _0)$ is finite. We then prove that if $G$ is CAT(0) with infinite monodromy, then the monodromy representation has a finite kernel. This applies in particular if $G/R$ is acylindrically hyperbolic.References
- M. F. Atiyah, The signature of fibre-bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 73–84. MR 254864
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Brian H. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008), no. 2, 281–300. MR 2367021, DOI 10.1007/s00222-007-0081-y
- Fabrizio Catanese and Sönke Rollenske, Double Kodaira fibrations, J. Reine Angew. Math. 628 (2009), 205–233. MR 2503241, DOI 10.1515/CRELLE.2009.024
- Cornelia Druţu and Michael Kapovich, Geometric group theory, American Mathematical Society Colloquium Publications, vol. 63, American Mathematical Society, Providence, RI, 2018. With an appendix by Bogdan Nica. MR 3753580, DOI 10.1090/coll/063
- Benson Farb and Howard Masur, Superrigidity and mapping class groups, Topology 37 (1998), no. 6, 1169–1176. MR 1632912, DOI 10.1016/S0040-9383(97)00099-2
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Michael Kapovich and Bernhard Leeb, Actions of discrete groups on nonpositively curved spaces, Math. Ann. 306 (1996), no. 2, 341–352. MR 1411351, DOI 10.1007/BF01445254
- K. Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967), 207–215. MR 216521, DOI 10.1007/BF02788717
- Bernhard Leeb, $3$-manifolds with(out) metrics of nonpositive curvature, Invent. Math. 122 (1995), no. 2, 277–289. MR 1358977, DOI 10.1007/BF01231445
- Claudio Llosa Isenrich and Pierre Py, Mapping class groups, multiple Kodaira fibrations, and CAT(0) spaces, Math. Ann. 380 (2021), no. 1-2, 449–485. MR 4263689, DOI 10.1007/s00208-020-02125-y
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Ashot Minasyan and Denis Osin, Acylindrical hyperbolicity of groups acting on trees, Math. Ann. 362 (2015), no. 3-4, 1055–1105. MR 3368093, DOI 10.1007/s00208-014-1138-z
- Nicolas Monod, Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc. 19 (2006), no. 4, 781–814. MR 2219304, DOI 10.1090/S0894-0347-06-00525-X
- D. Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016), no. 2, 851–888. MR 3430352, DOI 10.1090/tran/6343
- Jean-Pierre Otal, The hyperbolization theorem for fibered 3-manifolds, SMF/AMS Texts and Monographs, vol. 7, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001. Translated from the 1996 French original by Leslie D. Kay. MR 1855976
- Frédéric Paulin, Outer automorphisms of hyperbolic groups and small actions on $\textbf {R}$-trees, Arboreal group theory (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 331–343. MR 1105339, DOI 10.1007/978-1-4612-3142-4_{1}2
- Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), no. 3, 527–565. MR 1465334, DOI 10.1007/s002220050172
Bibliographic Information
- Kejia Zhu
- Affiliation: Department of Mathematics, University of California, Riverside, California 92507
- MR Author ID: 1499581
- Email: kzhumath@gmail.com
- Received by editor(s): July 1, 2022
- Received by editor(s) in revised form: December 21, 2022, December 22, 2022, and March 27, 2023
- Published electronically: July 28, 2023
- Communicated by: Genevieve S. Walsh
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4643-4651
- MSC (2020): Primary 20F65, 51H30, 20A05
- DOI: https://doi.org/10.1090/proc/16518
- MathSciNet review: 4634870