Sampling measure on Bergman spaces
HTML articles powered by AMS MathViewer
- by Zhengyuan Zhuo and Shanli Ye
- Proc. Amer. Math. Soc. 151 (2023), 4817-4825
- DOI: https://doi.org/10.1090/proc/16524
- Published electronically: August 4, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we investigate the relationship between sampling measure $\mu$, Berezin transform $\tilde {\mu }$ and $r$-averaging transform $\widehat {\mu }_r$ on Bergman spaces. Compared with some results of Luecking [Amer. J. Math. 107 (1985), pp. 85–111], our results provide an equivalent description of sampling measures, which reveals the reason why $1/\hat {\mu }_r\in L^\infty$ or $1/\tilde {\mu }\in L^\infty$ does not make sure that $\mu$ is a sampling measure on Bergman spaces.References
- Alain Blandignères, Emmanuel Fricain, Frédéric Gaunard, Andreas Hartmann, and William T. Ross, Direct and reverse Carleson measures for $\mathcal H(b)$ spaces, Indiana Univ. Math. J. 64 (2015), no. 4, 1027–1057. MR 3385785, DOI 10.1512/iumj.2015.64.5604
- Emmanuel Fricain, Andreas Hartmann, and William T. Ross, A survey on reverse Carleson measures, Harmonic analysis, function theory, operator theory, and their applications, Theta Ser. Adv. Math., vol. 19, Theta, Bucharest, 2017, pp. 91–123. MR 3753895
- Andreas Hartmann, Xavier Massaneda, Artur Nicolau, and Joaquim Ortega-Cerdà, Reverse Carleson measures in Hardy spaces, Collect. Math. 65 (2014), no. 3, 357–365. MR 3240999, DOI 10.1007/s13348-014-0105-z
- A. Hartmann, D. Kamissoko, S. Konate, and M.-A. Orsoni, Dominating sets in Bergman spaces and sampling constants, J. Math. Anal. Appl. 495 (2021), no. 2, Paper No. 124755, 18. MR 4182966, DOI 10.1016/j.jmaa.2020.124755
- Haakan Hedenmalm, Boris Korenblum, and Kehe Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000. MR 1758653, DOI 10.1007/978-1-4612-0497-8
- Taneli Korhonen and Jouni Rättyä, Zero sequences, factorization and sampling measures for weighted Bergman spaces, Math. Z. 291 (2019), no. 3-4, 1145–1173. MR 3936102, DOI 10.1007/s00209-019-02243-7
- Daniel Luecking, Closed ranged restriction operators on weighted Bergman spaces, Pacific J. Math. 110 (1984), no. 1, 145–160. MR 722745, DOI 10.2140/pjm.1984.110.145
- Daniel H. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), no. 1, 85–111. MR 778090, DOI 10.2307/2374458
- Daniel H. Luecking, Inequalities on Bergman spaces, Illinois J. Math. 25 (1981), no. 1, 1–11. MR 602889
- Daniel H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), no. 2, 319–336. MR 783918, DOI 10.1512/iumj.1985.34.34019
- Daniel H. Luecking, Sampling measures for Bergman spaces on the unit disk, Math. Ann. 316 (2000), no. 4, 659–679. MR 1758447, DOI 10.1007/s002080050348
- Zengjian Lou and Zhengyuan Zhuo, A class of reverse Carleson measures on doubling Fock spaces, Complex Anal. Oper. Theory 13 (2019), no. 4, 1795–1809. MR 3957015, DOI 10.1007/s11785-018-0858-6
- Kristian Seip, Interpolation and sampling in small Bergman spaces, Collect. Math. 64 (2013), no. 1, 61–72. MR 3016633, DOI 10.1007/s13348-011-0054-8
- Kristian Seip, Interpolation and sampling in spaces of analytic functions, University Lecture Series, vol. 33, American Mathematical Society, Providence, RI, 2004. MR 2040080, DOI 10.1090/ulect/033
- Cezhong Tong, Junfeng Li, Hua He, and Hicham Arroussi, Reverse Carleson measures on the weighted Bergman spaces with invariant weight, Ann. Funct. Anal. 12 (2021), no. 4, Paper No. 56, 28. MR 4310131, DOI 10.1007/s43034-021-00139-4
- Cezhong Tong and Xin Song, Reverse Carleson inequalities for weighted Bergman spaces with Békollé weights, Monatsh. Math. 197 (2022), no. 4, 733–753. MR 4404168, DOI 10.1007/s00605-022-01686-1
- Zipeng Wang and Xianfeng Zhao, Invertibility of Fock Toeplitz operators with positive symbols, J. Math. Anal. Appl. 435 (2016), no. 2, 1335–1351. MR 3429645, DOI 10.1016/j.jmaa.2015.11.020
- Peter Duren and Alexander Schuster, Bergman spaces, Mathematical Surveys and Monographs, vol. 100, American Mathematical Society, Providence, RI, 2004. MR 2033762, DOI 10.1090/surv/100
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
Bibliographic Information
- Zhengyuan Zhuo
- Affiliation: School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, People’s Republic of China
- MR Author ID: 1016151
- Email: zyzhuo@gpnu.edu.cn
- Shanli Ye
- Affiliation: School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023, People’s Republic of China
- ORCID: 0000-0002-5264-5738
- Email: slye@zust.edu.cn
- Received by editor(s): January 13, 2023
- Received by editor(s) in revised form: February 20, 2023, and April 14, 2023
- Published electronically: August 4, 2023
- Additional Notes: Research was supported by Guangdong Basic and Applied Basic Research Foundation (2020A1515110493), the Natural Science Research Project of Guangdong Education Department, China (2020KQNCX042), Guangdong Polytechnic Normal University Science Foundation(2021SDKYA154) and Zhejiang Provincial Natural Science Foundation of China(LY23A010003)
The first author is the corresponding author - Communicated by: Javad Mashreghi
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4817-4825
- MSC (2020): Primary 30H20, 46G12
- DOI: https://doi.org/10.1090/proc/16524
- MathSciNet review: 4634885