Small Hankel operators on generalized weighted Fock spaces
HTML articles powered by AMS MathViewer
- by Carme Cascante, Joan Fàbrega and Daniel Pascuas
- Proc. Amer. Math. Soc. 151 (2023), 4827-4839
- DOI: https://doi.org/10.1090/proc/16534
- Published electronically: June 30, 2023
- HTML | PDF | Request permission
Abstract:
In this work we characterize the boundedness, compactness and membership in the Schatten class of small Hankel operators on generalized weighted Fock spaces $F^{p,\ell }_\alpha (\omega )$ associated to an $\mathcal {A}^\ell _p$ weight $\omega$, for $1<p<\infty$, $\ell \ge 1$, and $\alpha >0$.References
- David Bekollé, Inégalité à poids pour le projecteur de Bergman dans la boule unité de $\textbf {C}^{n}$, Studia Math. 71 (1981/82), no. 3, 305–323 (French). MR 667319, DOI 10.4064/sm-71-3-305-323
- David Bekollé and Aline Bonami, Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 18, A775–A778 (French, with English summary). MR 497663
- Hélène Bommier-Hato, Miroslav Engliš, and El-Hassan Youssfi, Bergman-type projections in generalized Fock spaces, J. Math. Anal. Appl. 389 (2012), no. 2, 1086–1104. MR 2879282, DOI 10.1016/j.jmaa.2011.12.045
- C. Cascante, J. Fàbrega, and D. Pascuas, Boundedness of the Bergman projection on generalized Fock-Sobolev spaces on $\mathbb {C}^n$, Complex Anal. Oper. Theory 14 (2020), no. 2, Paper No. 4, 26 pp. doi:10.1007/s11785-020-00992-6.
- Carme Cascante, Joan Fàbrega, and Daniel Pascuas, Hankel bilinear forms on generalized Fock-Sobolev spaces on $\mathbf C^n$, Ann. Acad. Sci. Fenn. Math. 45 (2020), no. 2, 841–862. MR 4112263, DOI 10.5186/aasfm.2020.4546
- Carme Cascante, Joan Fàbrega, and Daniel Pascuas, Muckenhoupt type weights and Berezin formulas for Bergman spaces, J. Math. Anal. Appl. 504 (2021), no. 1, Paper No. 125481, 25. MR 4287482, DOI 10.1016/j.jmaa.2021.125481
- Carme Cascante, Joan Fàbrega, and José A. Peláez, Littlewood-Paley formulas and Carleson measures for weighted Fock spaces induced by $A_\infty$-type weights, Potential Anal. 50 (2019), no. 2, 221–244. MR 3905529, DOI 10.1007/s11118-018-9680-z
- Joshua Isralowitz, Invertible Toeplitz products, weighted norm inequalities, and $\textrm {A}_p$ weights, J. Operator Theory 71 (2014), no. 2, 381–410. MR 3214643, DOI 10.7900/jot.2012apr10.1989
- Svante Janson, Jaak Peetre, and Richard Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoamericana 3 (1987), no. 1, 61–138. MR 1008445, DOI 10.4171/RMI/46
- José Ángel Peláez and Jouni Rättyä, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (2014), no. 1066, vi+124. MR 3155774
- José Ángel Peláez and Jouni Rättyä, Two weight inequality for Bergman projection, J. Math. Pures Appl. (9) 105 (2016), no. 1, 102–130 (English, with English and French summaries). MR 3427941, DOI 10.1016/j.matpur.2015.10.001
- Sandra Pott and Maria Carmen Reguera, Sharp Békollé estimates for the Bergman projection, J. Funct. Anal. 265 (2013), no. 12, 3233–3244. MR 3110501, DOI 10.1016/j.jfa.2013.08.018
- J. Weidmann, Linear operators on Hilbert spaces, Graduate Text in Mathematics, vol. 68, Springer, New York, 1980.
- K. Yosida, Functional analysis, Reprint of the sixth (1980) edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. doi:10.1007/978-3-642-61859-8.
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
- Kehe Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, vol. 263, Springer, New York, 2012. MR 2934601, DOI 10.1007/978-1-4419-8801-0
Bibliographic Information
- Carme Cascante
- Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain; Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
- MR Author ID: 288755
- Email: cascante@ub.edu
- Joan Fàbrega
- Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain
- ORCID: 0000-0003-1985-7306
- Email: joan_fabrega@ub.edu
- Daniel Pascuas
- Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain
- MR Author ID: 290506
- Email: daniel_pascuas@ub.edu
- Received by editor(s): September 20, 2022
- Received by editor(s) in revised form: September 22, 2022, and April 20, 2023
- Published electronically: June 30, 2023
- Additional Notes: The first author was partially supported by Ministerio de Ciencia e Innovación, Spain, project PID2021-123405NB-I00, Generalitat de Catalunya, project 2021SGR00087, and the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M)
The second author was partially supported by Ministerio de Ciencia e Innovación, Spain, project PID2021-123405NB-I00.
The third author was partially supported by Ministerio de Ciencia e Innovación, Spain, project PID2021-123405NB-I00. - Communicated by: Javad Mashreghi
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4827-4839
- MSC (2020): Primary 47B35, 47B10; Secondary 30H20, 42B25
- DOI: https://doi.org/10.1090/proc/16534
- MathSciNet review: 4634886