Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Small Hankel operators on generalized weighted Fock spaces
HTML articles powered by AMS MathViewer

by Carme Cascante, Joan Fàbrega and Daniel Pascuas
Proc. Amer. Math. Soc. 151 (2023), 4827-4839
DOI: https://doi.org/10.1090/proc/16534
Published electronically: June 30, 2023

Abstract:

In this work we characterize the boundedness, compactness and membership in the Schatten class of small Hankel operators on generalized weighted Fock spaces $F^{p,\ell }_\alpha (\omega )$ associated to an $\mathcal {A}^\ell _p$ weight $\omega$, for $1<p<\infty$, $\ell \ge 1$, and $\alpha >0$.
References
Similar Articles
Bibliographic Information
  • Carme Cascante
  • Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain; Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
  • MR Author ID: 288755
  • Email: cascante@ub.edu
  • Joan Fàbrega
  • Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain
  • ORCID: 0000-0003-1985-7306
  • Email: joan_fabrega@ub.edu
  • Daniel Pascuas
  • Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain
  • MR Author ID: 290506
  • Email: daniel_pascuas@ub.edu
  • Received by editor(s): September 20, 2022
  • Received by editor(s) in revised form: September 22, 2022, and April 20, 2023
  • Published electronically: June 30, 2023
  • Additional Notes: The first author was partially supported by Ministerio de Ciencia e Innovación, Spain, project PID2021-123405NB-I00, Generalitat de Catalunya, project 2021SGR00087, and the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M)
    The second author was partially supported by Ministerio de Ciencia e Innovación, Spain, project PID2021-123405NB-I00.
    The third author was partially supported by Ministerio de Ciencia e Innovación, Spain, project PID2021-123405NB-I00.
  • Communicated by: Javad Mashreghi
  • © Copyright 2023 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 151 (2023), 4827-4839
  • MSC (2020): Primary 47B35, 47B10; Secondary 30H20, 42B25
  • DOI: https://doi.org/10.1090/proc/16534
  • MathSciNet review: 4634886